论文标题

建议以风格为条件的兼容服装

Recommendation of Compatible Outfits Conditioned on Style

论文作者

Banerjee, Debopriyo, Dhakad, Lucky, Maheshwari, Harsh, Chelliah, Muthusamy, Ganguly, Niloy, Bhattacharya, Arnab

论文摘要

时尚域中的建议在各个领域的研究中都激增,例如,商店,上下文感知的服装创建,个性化的服装创建等。在服装领域的大多数最艺术品方法建议追求以改善项目之间的兼容性,以便产生高质量的服装。最近的一些作品已经意识到,风格是时尚的重要因素,并将其纳入了兼容性学习和服装生成中。这些方法通常取决于细粒产品类别的可用性或富含项目属性的存在(例如,长裙,迷你裙等)。在这项工作中,我们旨在以风格或主题为条件,就像在现实生活中打扮,在实际假设下运行,即每个项目都映射到由在线门户的分类法(例如户外,正式,正式等和图像)驱动的高级类别。我们使用一种新型样式编码网络,该网络在平滑的潜在空间中呈现服装样式。我们对我们方法的不同方面进行了广泛的分析,并通过严格的实验证明了其优于现有的艺术基线状态。

Recommendation in the fashion domain has seen a recent surge in research in various areas, for example, shop-the-look, context-aware outfit creation, personalizing outfit creation, etc. The majority of state of the art approaches in the domain of outfit recommendation pursue to improve compatibility among items so as to produce high quality outfits. Some recent works have realized that style is an important factor in fashion and have incorporated it in compatibility learning and outfit generation. These methods often depend on the availability of fine-grained product categories or the presence of rich item attributes (e.g., long-skirt, mini-skirt, etc.). In this work, we aim to generate outfits conditional on styles or themes as one would dress in real life, operating under the practical assumption that each item is mapped to a high level category as driven by the taxonomy of an online portal, like outdoor, formal etc and an image. We use a novel style encoder network that renders outfit styles in a smooth latent space. We present an extensive analysis of different aspects of our method and demonstrate its superiority over existing state of the art baselines through rigorous experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源