论文标题

Tsubasa:历史和实时数据的气候网络构建

TSUBASA: Climate Network Construction on Historical and Real-Time Data

论文作者

Xu, Yunlong, Liu, Jinshu, Nargesian, Fatemeh

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A climate network represents the global climate system by the interactions of a set of anomaly time-series. Network science has been applied on climate data to study the dynamics of a climate network. The core task and first step to enable interactive network science on climate data is the efficient construction and update of a climate network on user-defined time-windows. We present TSUBASA, an algorithm for the efficient construction of climate networks based on the exact calculation of Pearsons correlation of large time-series. By pre-computing simple and low-overhead statistics, TSUBASA can efficiently compute the exact pairwise correlation of time-series on arbitrary time windows at query time. For real-time data, TSUBASA proposes a fast and incremental way of updating a network at interactive speed. Our experiments show that TSUBASA is faster than approximate solutions at least one order of magnitude for both historical and real-time data and outperforms a baseline for time-series correlation calculation up to two orders of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源