论文标题

测量的Sigma模型和出色的调味夹

Gauged sigma models and exceptional dressing cosets

论文作者

Sakatani, Yuho, Uehara, Shozo

论文摘要

Poisson-lie(PL)T偶二维是基于Drinfel double的Lie代数的广义T偶。特别是,当我们考虑coset空间的Pl t偶数性时,发现双空间是一个广义的coset空间,称为敷料caset。在本文中,我们调查了敷料余弦的扩展到U-二元性设置。我们提出了M-Mheor和类型IIB理论中各种Branes的测量作用,在该理论和类型的IIB理论中,通过使用特殊的Drinfel'd代数(EDA)构建了广义的度量,并且量规代数是EDA的某些各向同性subalgebra。通过消除量规场,测量的动作将在某些降低的背景下减少到标准的brane动作,我们称之为特殊的调味料。我们还提出了一个基于SFETSOS方法的特殊敷料coset的替代定义,并在U-偶尔性融合配方中重现了已知的非亚伯T偶性例子。

The Poisson-Lie (PL) T-duality is a generalized T-duality based on the Lie algebra of the Drinfel'd double. In particular, when we consider the PL T-duality of a coset space, the dual space is found to be a generalized coset space, which is called the dressing coset. In this paper, we investigate an extension of the dressing cosets to the U-duality setup. We propose the gauged actions for various branes in M-theory and type IIB theory, where the generalized metric is constructed by using the Exceptional Drinfel'd Algebra (EDA) and the gauge algebra is a certain isotropic subalgebra of the EDA. By eliminating the gauge fields, the gauged action reduces to the standard brane action on a certain reduced background, which we call the exceptional dressing coset. We also propose an alternative definition of the exceptional dressing cosets based on Sfetsos's approach and reproduce a known example of non-Abelian T-duality in the U-duality-covariant formulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源