论文标题

电动驱动的多量子量子点量子位的优化

Optimisation of electrically-driven multi-donor quantum dot qubits

论文作者

Sarkar, Abhikbrata, Hochstetter, Joel, Kha, Allen, Hu, Xuedong, Simmons, Michelle Y., Rahman, Rajib, Culcer, Dimitrie

论文摘要

在基于SI的量子计算中,多量子量子点一直处于最新进展的最前沿。其中,$ 2p:1p $ Qubits具有内置的偶极矩,可以通过超精细介导的电子偶极旋转共振(EDSR)实现全电动旋转操作。全电动多折扣点的发展需要充分了解其EDSR和相干性能,并结合其基态的多谷化性质。在这里,通过引入差异有效的质量波功能,我们研究了量子几何形状和附近电荷缺陷对$ 2p:1p $ Qubits的电气操作和连贯性的影响。我们报告了四个结果:(i)$ 2P $和$ 1P $站点之间的超精细相互作用的差异可实现快速EDSR,其中$t_π\ sim 10-50 $ ns和Rabi Ratio $ $(T_1/T_π)\ SIM 10^6 $。我们分析了$ 2P:1P $轴的量子,沿[100],[110]和[111]水晶轴对齐,发现最快的EDSR时间$t_π$是在$ 2p:1p $ axis为$ \ axis as $ \ paratele $ [111]时发生的,而当它是最佳的兔子比率时,当它是$ $ \ $ \ [100]时出现。这种差异归因于波函数在$ 2p $和$ 1p $之间的不同几何形状之间的差异。相比之下,$ 2p $轴的选择对量子运营没有明显的影响。 (ii)对附近电荷缺陷引起的随机电报噪声的敏感性在很大程度上取决于附近缺陷相对于量子的位置。对于某些缺陷的方向,随机电报噪声对失调和$ 2P-1P $隧道都有明显的影响,后者引起了门错误。 (iii)量子量对于$ 1/f $噪声是可靠的,只要它远离电荷抗骨架即可。 (iv)通过交换的纠缠比偶极 - 偶极耦合快几个数量级。这些发现为基于快速,低功率,连贯和可扩展的供体量子计算的方式铺平了道路。

Multi-donor quantum dots have been at the forefront of recent progress in Si-based quantum computation. Among them, $2P:1P$ qubits have a built-in dipole moment, enabling all-electrical spin operation via hyperfine mediated electron dipole spin resonance (EDSR). The development of all-electrical multi-donor dot qubits requires a full understanding of their EDSR and coherence properties, incorporating multi-valley nature of their ground state. Here, by introducing a variational effective mass wave-function, we examine the impact of qubit geometry and nearby charge defects on the electrical operation and coherence of $2P:1P$ qubits. We report four outcomes: (i) The difference in the hyperfine interaction between the $2P$ and $1P$ sites enables fast EDSR, with $T_π\sim 10-50$ ns and a Rabi ratio $ (T_1/T_π) \sim 10^6$. We analyse qubits with the $2P:1P$ axis aligned along the [100], [110] and [111] crystal axes, finding that the fastest EDSR time $T_π$ occurs when the $2P:1P$ axis is $\parallel$[111], while the best Rabi ratio occurs when it is $\parallel$ [100]. This difference is attributed to the difference in the wave function overlap between $2P$ and $1P$ for different geometries. In contrast, the choice of $2P$ axis has no visible impact on qubit operation. (ii) Sensitivity to random telegraph noise due to nearby charge defects depends strongly on the location of the nearby defects with respect to the qubit. For certain orientations of defects random telegraph noise has an appreciable effect both on detuning and $2P-1P$ tunneling, with the latter inducing gate errors. (iii) The qubit is robust against $1/f$ noise provided it is operated away from the charge anticrossing. (iv) Entanglement via exchange is several orders of magnitude faster than dipole-dipole coupling. These findings pave the way towards fast, low-power, coherent and scalable donor dot-based quantum computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源