论文标题
通过物理知情的神经网络校准与全场数据的构成模型
Calibrating constitutive models with full-field data via physics informed neural networks
论文作者
论文摘要
具有全场实验数据的固体组成模型的校准是一个长期的挑战,尤其是在发生较大变形的材料中。在本文中,我们提出了一个具有物理知识的深度学习框架,以发现构成模型参数化,并在给定全场外位移数据和全局力量位置数据的情况下。与该领域最近的大多数文献相反,我们使用管理方程式的弱形式,而不是强大的形式,以对神经网络预测施加物理约束。本文介绍的方法是计算上有效的,适用于不规则的几何域,并且很容易摄入位移数据,而无需插值到计算网格上。考虑适用于不同材料类别的规范过度弹性材料模型,包括新霍克人,绅士和布拉茨-KO本构模型,作为一般超弹性行为的典范,具有锁定的聚合物行为以及可压缩的泡沫行为。我们证明了物理学知情的机器学习是一项有能力的技术,并且可能会改变如何利用全场实验数据来校准有限变形的本构模型的范式。
The calibration of solid constitutive models with full-field experimental data is a long-standing challenge, especially in materials which undergo large deformation. In this paper, we propose a physics-informed deep-learning framework for the discovery of constitutive model parameterizations given full-field displacement data and global force-displacement data. Contrary to the majority of recent literature in this field, we work with the weak form of the governing equations rather than the strong form to impose physical constraints upon the neural network predictions. The approach presented in this paper is computationally efficient, suitable for irregular geometric domains, and readily ingests displacement data without the need for interpolation onto a computational grid. A selection of canonical hyperelastic materials models suitable for different material classes is considered including the Neo-Hookean, Gent, and Blatz-Ko constitutive models as exemplars for general hyperelastic behavior, polymer behavior with lock-up, and compressible foam behavior respectively. We demonstrate that physics informed machine learning is an enabling technology and may shift the paradigm of how full-field experimental data is utilized to calibrate constitutive models under finite deformations.