论文标题
局部刚性定理,用于电动赛车时期最小的两球
A local rigidity theorem for minimal two-spheres in an electrovacuum spacetime
论文作者
论文摘要
本文的目的是证明,在适当限制时空时空$ m $的情况下,如果$σ\ subset m $是一种嵌入了严格稳定的最小稳定的最小两杆,在当地可以最大化带电的鹰量,那么它在$ m $中存在于Reissner-nordstrun-nordstrul-nordstrul-nordstroustroum-de sitterserters selitter selitters selitters selitter selitters selitter serters in $ m $。同时,通过\ cite {brendle}进行动机,我们将推断出两球的面积的估计值,该面积在局部区域中最小化,在电动赛车时期中最小化。此外,如果平等成立,则在带电的Nariai空间的$ M $等距中存在一个邻域。
The purpose of this article is to prove that, under suitable constrains on the electrovacuum spacetime $M$, if $Σ\subset M$ is an embedded strictly stable minimal two-sphere which locally maximizes the charged Hawking mass, then there exist a neighborhood of it in $M$ isometric to the Reissner-Nordström-de Sitter space. At the same time, motived by \cite{Brendle}, we will deduce an estimate for area of a two-sphere which is locally area minimizing in an electrovacuum spacetime. Moreover, if the equality holds, then there exist a neighborhood of it in $M$ isometric to the charged Nariai space.