论文标题
逃避数据稀缺性高分辨率异质面部幻觉
Escaping Data Scarcity for High-Resolution Heterogeneous Face Hallucination
论文作者
论文摘要
在异质的面部识别(HFR)中,目的是匹配两个不同域(例如可见和热的域)。大域差异使HFR成为一个困难的问题。试图通过合成填补空白的最新方法取得了令人鼓舞的结果,但是它们的性能仍然受到配对训练数据的稀缺性的限制。实际上,由于收购和注释过程的高成本以及隐私法规,大规模的异质面部数据通常无法访问。在本文中,我们为HFR提出了一个新的面部幻觉范式,该范例不仅可以实现数据有效的合成,而且还可以在不破坏任何隐私政策的情况下扩展模型培训。与现有的完全从头开始学习面部合成的方法不同,我们的方法尤其旨在利用可见域中的丰富和多样化的面部先验,以获得更忠实的幻觉。另一方面,通过引入新的联合学习计划来实现大规模培训,以允许机构合作,同时避免明确的数据共享。广泛的实验证明了我们在当前数据限制下解决HFR的方法的优势。在统一的框架中,我们的方法在多个HFR数据集上产生最新的幻觉。
In Heterogeneous Face Recognition (HFR), the objective is to match faces across two different domains such as visible and thermal. Large domain discrepancy makes HFR a difficult problem. Recent methods attempting to fill the gap via synthesis have achieved promising results, but their performance is still limited by the scarcity of paired training data. In practice, large-scale heterogeneous face data are often inaccessible due to the high cost of acquisition and annotation process as well as privacy regulations. In this paper, we propose a new face hallucination paradigm for HFR, which not only enables data-efficient synthesis but also allows to scale up model training without breaking any privacy policy. Unlike existing methods that learn face synthesis entirely from scratch, our approach is particularly designed to take advantage of rich and diverse facial priors from visible domain for more faithful hallucination. On the other hand, large-scale training is enabled by introducing a new federated learning scheme to allow institution-wise collaborations while avoiding explicit data sharing. Extensive experiments demonstrate the advantages of our approach in tackling HFR under current data limitations. In a unified framework, our method yields the state-of-the-art hallucination results on multiple HFR datasets.