论文标题
DUKHIN编号是无限长纳米孔限制中选择性的缩放参数:扩展到多价电解质
The Dukhin number as a scaling parameter for selectivity in the infinitely long nanopore limit: extension to multivalent electrolytes
论文作者
论文摘要
纳米电视行为的缩放表示设备函数(选择性,在这项工作中)是缩放参数的唯一函数,它是设备参数的适当组合。尽管纳米孔促进了离子通过有限长度的膜的运输,如果孔隙长度与孔径相比,我们处理了一个重要的极限情况,即无限长的纳米孔(纳米管)。在我们先前的研究中(Sarkadi等,J。Chem。Phys。154(2021)154704。)我们表明,Dukhin的数量是1:1电解质的纳米管限制中的适当缩放参数,在这项工作中,我们根据Poisson Boltzmann(PB)(PB)(PB)的群体和通用量从第一原理中获得Dukhin数字,从而构成了电源。我们表明,在隐式溶剂中为带电硬球的大型蒙特卡洛模拟提供了与从PB理论中获得的结果相似的结果,其偏差是离子相关性的后果(包括离子的有限大小(包括离子的有限大小)),而不是Pb理论的平均场水平。例如,当电荷反转存在时,会发生这种偏差,例如,在2:2和3:1电解质中。
Scaling of the behavior of a nanodevice means that the device function (selectivity, in this work) is a unique function of a scaling parameter that is an appropriate combination of the device parameters. Although nanopores facilitate the transport of ions through a membrane of finite length if the pore is long compared to the pore radius, we deal with an important limiting case, the infinitely long nanopore (nanotube). While in our previous study (Sarkadi et al., J. Chem. Phys. 154 (2021) 154704.) we showed that the Dukhin number is an appropriate scaling parameter in the nanotube limit for 1:1 electrolytes, in this work we obtain the Dukhin number from first principles on the basis of the Poisson-Boltzmann (PB) theory and generalize it to electrolytes containing multivalent ions as well. We show that grand canonical Monte Carlo simulations for charged hard spheres in an implicit solvent give results that are similar to those obtained from the PB theory with deviations that are the consequences of ionic correlations (including finite size of ions) beyond the mean-field level of the PB theory. Such a deviation occurs when charge inversion is present, in 2:2 and 3:1 electrolytes, for example.