论文标题

利用多个存储库的预测来改善机器人检测

Leveraging Predictions from Multiple Repositories to Improve Bot Detection

论文作者

Chidambaram, Natarajan, Decan, Alexandre, Golzadeh, Mehdi

论文摘要

GITHUB等当代社会编码平台有助于协作分布式软件开发。参与这些平台的开发人员经常使用机器帐户(bot)来自动化努力密集型或重复性活动。在社会技术研究中,确定贡献者是否对应于机器人或人类账户对应,例如,评估使用机器人的积极和负面影响,分析机器人的演变及其用法,识别人类最大的贡献者,等等。 Bodegha是文献中提出的机器人检测工具之一。它依靠单个存储库中的评论活动来预测帐户是由机器人还是由人类驱动的。本文提出了有关如何通过一次结合从许多存储库获得的预测来提高Bodegha的有效性的初步结果。我们发现,这样做不仅增加了可以进行预测的案例数,而且可以通过这种方式修复许多不同的预测。这些有希望的(尽管是初步)的结果表明,“人群的智慧”原则可以提高机器人检测工具的有效性。

Contemporary social coding platforms such as GitHub facilitate collaborative distributed software development. Developers engaged in these platforms often use machine accounts (bots) for automating effort-intensive or repetitive activities. Determining whether a contributor corresponds to a bot or a human account is important in socio-technical studies, for example, to assess the positive and negative impact of using bots, analyse the evolution of bots and their usage, identify top human contributors, and so on. BoDeGHa is one of the bot detection tools that have been proposed in the literature. It relies on comment activity within a single repository to predict whether an account is driven by a bot or by a human. This paper presents preliminary results on how the effectiveness of BoDeGHa can be improved by combining the predictions obtained from many repositories at once. We found that doing this not only increases the number of cases for which a prediction can be made but that many diverging predictions can be fixed this way. These promising, albeit preliminary, results suggest that the "wisdom of the crowd" principle can improve the effectiveness of bot detection tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源