论文标题
$ k $ - 完美的基础和正式类似物的cuspidal曲线理论
$K$-Theory of Cuspidal Curves Over a Perfectoid Base And Formal Analogues
论文作者
论文摘要
在本文中,我们继续使用代数$ k $ - 理论的最新进展将特征性$ p $进行的计算扩展到使用Perfectoid环的混合特性设置。我们在\ cite {hesselholt_nikolaus}中扩展了Hesselholt-Nikolaus在代数$ k $的cuspidal曲线理论上的工作。我们考虑了Cuspidal曲线和Cuspidal曲线的$ P $ completion。在此过程中,我们还研究了$ k $ - $ p $ complete的仿期线的理论。
In this paper we continue the work of using the recent advances in algebraic $K$-theory to extend computations done in characteristic $p$ to the mixed characteristic setting using perfectoid rings. We extend the work of Hesselholt-Nikolaus in \cite{Hesselholt_Nikolaus} on the algebraic $K$-Theory of cuspidal curves. We consider both cuspidal curves and the $p$-completion of cuspidal curves. Along the way we also study the $K$-theory of the $p$-completed affine line over a perfectoid ring.