论文标题

AEGNN:基于事件的异步图神经网络

AEGNN: Asynchronous Event-based Graph Neural Networks

论文作者

Schaefer, Simon, Gehrig, Daniel, Scaramuzza, Davide

论文摘要

为事件摄像机设计的最佳性能学习算法是首先将事件转换为密集表示,然后使用标准CNN进行处理。但是,这些步骤既丢弃了事件的稀疏性和高度分辨率,从而导致了很高的计算负担和延迟。因此,最近的作品采用了图形神经网络(GNN),这些事件是``静态的''时空图表,它们本质上是“稀疏”的。我们通过引入基于事件的图形神经网络(AEGNNS),一个新型的事件式gns gns of tans of devigm gns of devol,我们将这种趋势进一步迈出了这一趋势。时空图。 AEGNN遵循有效的更新规则,该规则仅限于每个新事件影响的节点的网络激活重新计算,从而大大降低了逐个事件处理的计算和延迟。 AEGNN可以轻松地在同步输入上训练,并且可以在测试时转换为有效的“异步”网络。我们在对象分类和检测任务上彻底验证了我们的方法,在该方法中,我们显示出比最新的异步方法相比,计算复杂性(FLOPS)的11倍降低,具有相似甚至更好的性能。与标准GNN相比,计算的减少直接转化为计算潜伏期的8倍降低,这为基于低延迟事件的处理打开了门。

The best performing learning algorithms devised for event cameras work by first converting events into dense representations that are then processed using standard CNNs. However, these steps discard both the sparsity and high temporal resolution of events, leading to high computational burden and latency. For this reason, recent works have adopted Graph Neural Networks (GNNs), which process events as ``static" spatio-temporal graphs, which are inherently "sparse". We take this trend one step further by introducing Asynchronous, Event-based Graph Neural Networks (AEGNNs), a novel event-processing paradigm that generalizes standard GNNs to process events as ``evolving" spatio-temporal graphs. AEGNNs follow efficient update rules that restrict recomputation of network activations only to the nodes affected by each new event, thereby significantly reducing both computation and latency for event-by-event processing. AEGNNs are easily trained on synchronous inputs and can be converted to efficient, "asynchronous" networks at test time. We thoroughly validate our method on object classification and detection tasks, where we show an up to a 11-fold reduction in computational complexity (FLOPs), with similar or even better performance than state-of-the-art asynchronous methods. This reduction in computation directly translates to an 8-fold reduction in computational latency when compared to standard GNNs, which opens the door to low-latency event-based processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源