论文标题

量子开放系统通过全球优化识别:时间序列数据的最佳准确的公开系统的马尔可夫模型

Quantum open system identification via global optimization: Optimally accurate Markovian models of open systems from time-series data

论文作者

Popovych, Zakhar, Jacobs, Kurt, Korpas, Georgios, Marecek, Jakub, Bondar, Denys I.

论文摘要

量子电路动力学的准确模型对于优化和推进量子设备至关重要。由于实际量子系统中的环境噪声和耗散的第一原理通常是不可用的,因此从测得的时间序列数据中得出准确的模型至关重要。但是,识别开放量子系统会带来重大挑战:系统工程的强大方法在弱阻尼(如我们所示)之外的性能不佳,因为它们未能纳入量子演化所需的基本约束(例如,阳性)。可以包含这些约束的常见方法通常是多步骤,将线性模型拟合到物理扎根的主方程,通常会导致非convex函数,其中局部优化算法被卡在本地极点(如我们所示)。在这项工作中,我们通过将量子系统识别直接从数据识别作为多项式优化问题来解决这些问题,从而实现了最近开发的全局优化方法。这些方法基本上可以保证达到全局最佳选择,从而使我们首次有效地获得了给定系统的最准确的马尔可夫模型。除了实际的重要性外,这使我们能够将这些马尔可夫模型的错误作为系统非马克维亚性的替代(操作)度量。我们使用Spin-Boson模型(一种耦合到谐波振荡器浴缸的两级系统)测试我们的方法 - 为此我们使用矩阵 - 产物态技术获得了精确的进化。我们表明,使用力矩/方形方法的多项式优化显着优于传统优化算法,并且我们表明,即使对于强阻尼,Lindblad-form-Master方程也可以提供旋转玻璃体系统的准确模型。

Accurate models of the dynamics of quantum circuits are essential for optimizing and advancing quantum devices. Since first-principles models of environmental noise and dissipation in real quantum systems are often unavailable, deriving accurate models from measured time-series data is critical. However, identifying open quantum systems poses significant challenges: powerful methods from systems engineering can perform poorly beyond weak damping (as we show) because they fail to incorporate essential constraints required for quantum evolution (e.g., positivity). Common methods that can include these constraints are typically multi-step, fitting linear models to physically grounded master equations, often resulting in non-convex functions in which local optimization algorithms get stuck in local extrema (as we show). In this work, we solve these problems by formulating quantum system identification directly from data as a polynomial optimization problem, enabling the use of recently developed global optimization methods. These methods are essentially guaranteed to reach global optima, allowing us for the first time to efficiently obtain the most accurate Markovian model for a given system. In addition to its practical importance, this allows us to take the error of these Markovian models as an alternative (operational) measure of the non-Markovianity of a system. We test our method with the spin-boson model -- a two-level system coupled to a bath of harmonic oscillators -- for which we obtain the exact evolution using matrix-product-state techniques. We show that polynomial optimization using moment/sum-of-squares approaches significantly outperforms traditional optimization algorithms, and we show that even for strong damping Lindblad-form master equations can provide accurate models of the spin-boson system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源