论文标题

一般激活的随机神经网络中的对抗示例

Adversarial Examples in Random Neural Networks with General Activations

论文作者

Montanari, Andrea, Wu, Yuchen

论文摘要

大量的经验工作记录了深度学习模型中缺乏鲁棒性来进行对抗例子。最近的理论工作证明,对抗性示例在具有亚指数宽度和relu或平滑激活的两层网络中无处不在,以及具有子指数宽度的多层relu网络。我们提出了相同类型的结果,对宽度和一般局部Lipschitz的连续激活无限制。 更准确地说,给定一个神经网络$ f(\,\ cdot \ ,,; {\boldsymbolθ})$,带有随机重量$ {\boldsymbolθ} $,并功能vector $ {\ boldsymbol x} $ $ \ nabla _ {\ boldsymbol x} f({\ boldsymbol x}; {\boldsymbolθ})$。我们的证明是基于高斯调节技术。我们不是在$ {\ boldsymbol x} $的附近$ f $表示近似线性,而是表征$ f({\ boldsymbol x}; {\boldsymbolθ}})$和$ f({\ boldsymbol x}'; {\ boldsymbol x}'; {\ boldsymbol tuld $ $ tobol {\ boldsymbol x} -s({\ boldsymbol x})\ nabla _ {\ boldsymbol x} f({\ boldsymbol x}; {\ boldsymbolths; {\boldsymbolθ})$。

A substantial body of empirical work documents the lack of robustness in deep learning models to adversarial examples. Recent theoretical work proved that adversarial examples are ubiquitous in two-layers networks with sub-exponential width and ReLU or smooth activations, and multi-layer ReLU networks with sub-exponential width. We present a result of the same type, with no restriction on width and for general locally Lipschitz continuous activations. More precisely, given a neural network $f(\,\cdot\,;{\boldsymbol θ})$ with random weights ${\boldsymbol θ}$, and feature vector ${\boldsymbol x}$, we show that an adversarial example ${\boldsymbol x}'$ can be found with high probability along the direction of the gradient $\nabla_{\boldsymbol x}f({\boldsymbol x};{\boldsymbol θ})$. Our proof is based on a Gaussian conditioning technique. Instead of proving that $f$ is approximately linear in a neighborhood of ${\boldsymbol x}$, we characterize the joint distribution of $f({\boldsymbol x};{\boldsymbol θ})$ and $f({\boldsymbol x}';{\boldsymbol θ})$ for ${\boldsymbol x}' = {\boldsymbol x}-s({\boldsymbol x})\nabla_{\boldsymbol x}f({\boldsymbol x};{\boldsymbol θ})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源