论文标题
impdet:探索3D对象检测的隐式字段
ImpDet: Exploring Implicit Fields for 3D Object Detection
论文作者
论文摘要
常规的3D对象检测方法集中于有几个参数的边界框表示学习,即定位,维度和方向。尽管它的流行和普遍性,但这种简单的范式对轻微的数值偏差敏感,尤其是在本地化中。通过利用该点云的属性自然捕获在对象表面上,以及准确的位置和强度信息,我们引入了一个新的视角,将界框回归视为隐式函数。这导致了我们提出的框架,称为隐式检测或IMPDET,该框架利用3D对象检测的隐式字段学习。我们的IMPDET将特定值分配给不同的本地3D空间中的点,从而可以通过对边界内部或外部分类点来生成高质量的边界。为了解决对象表面上的稀疏问题,我们进一步提出了一种简单而有效的虚拟采样策略,不仅填补了空区域,而且还学习丰富的语义特征以帮助完善边界。对Kitti和Waymo基准测试的广泛实验结果证明了将隐式领域统一到对象检测中的有效性和鲁棒性。
Conventional 3D object detection approaches concentrate on bounding boxes representation learning with several parameters, i.e., localization, dimension, and orientation. Despite its popularity and universality, such a straightforward paradigm is sensitive to slight numerical deviations, especially in localization. By exploiting the property that point clouds are naturally captured on the surface of objects along with accurate location and intensity information, we introduce a new perspective that views bounding box regression as an implicit function. This leads to our proposed framework, termed Implicit Detection or ImpDet, which leverages implicit field learning for 3D object detection. Our ImpDet assigns specific values to points in different local 3D spaces, thereby high-quality boundaries can be generated by classifying points inside or outside the boundary. To solve the problem of sparsity on the object surface, we further present a simple yet efficient virtual sampling strategy to not only fill the empty region, but also learn rich semantic features to help refine the boundaries. Extensive experimental results on KITTI and Waymo benchmarks demonstrate the effectiveness and robustness of unifying implicit fields into object detection.