论文标题
重复提取炒量子数据:Hayden-Preskill类型方案的可持续性
Repeated Extraction of Scrambled Quantum Data: Sustainability of the Hayden-Preskill Type Protocols
论文作者
论文摘要
我们介绍并研究了Crambler Hacking的问题,这是从只有部分访问的量子扰流器上提取量子信息的过程和安装。这个问题必然来自当代物理学中的一个核心主题 - 从经历争夺动态的系统中的信息恢复,例如黑洞研究中的海顿 - 普雷斯基尔协议 - 因为由于无键定理,在提取它时必须将量子数据替换为量子数据。对于大型加扰者,我们为最佳黑客忠诚度提供了分析公式,这是对乱伦黑客攻击有限的有效性的定量度量。在鲍勃(Bob)试图攻击爱丽丝(Alice)数据的两种用户方案中,我们发现最佳保真度收敛到$ 64/(9π^2)\ of0.72 $,而相对于爱丽丝的用户空间,鲍勃的黑客攻击空间增加了。我们将结果应用于黑洞信息问题,并表明有限的黑客忠诚度意味着黑洞作为信息镜的反射率衰减,这质疑黑洞信息悖论通过Hayden-Preskill型协议质疑了黑洞信息悖论。
We introduce and study the problem of scrambler hacking, which is the procedure of quantum information extraction from and installation on a quantum scrambler given only partial access. This problem necessarily emerges from a central topic in contemporary physics - information recovery from systems undergoing scrambling dynamics, such as the Hayden-Preskill protocol in black hole studies - because one must replace quantum data with another when extracting it due to the no-cloning theorem. For large scramblers, we supply analytical formulas for the optimal hacking fidelity, a quantitative measure of the effectiveness of scrambler hacking with limited access. In the two-user scenario where Bob attempts to hack Alice's data, we find that the optimal fidelity converges to $64/(9π^2)\approx0.72$ with increasing Bob's hacking space relative to Alice's user space. We applied our results to the black hole information problem and showed that the limited hacking fidelity implies the reflectivity decay of a black hole as an information mirror, which questions the solvability of the black hole information paradox through the Hayden-Preskill type protocol.