论文标题
还原群体方案的替代元素封面
Étale metaplectic covers of reductive group schemes
论文作者
论文摘要
给定还原的组方案$ g $,我们在其分类堆栈$ \ mathrm b(g)$上提供了减少étale$ 4 $ cocycles的线性代数描述。这些Cocycles形成了$ 2 $ - 群体,我们将其解释为$ g $的Metaplectic封面的参数。我们使用线性代数描述来定义langlands双重封面的双重。
Given a reductive group scheme $G$, we give a linear algebraic description of reduced étale $4$-cocycles on its classifying stack $\mathrm B(G)$. These cocycles form a $2$-groupoid, which we interpret as parameters of metaplectic covers of $G$. We use our linear algebraic description to define the Langlands dual of a metaplectic cover.