论文标题

可学习的潜在嵌入用于联合行为和神经分析

Learnable latent embeddings for joint behavioral and neural analysis

论文作者

Schneider, Steffen, Lee, Jin Hwa, Mathis, Mackenzie Weygandt

论文摘要

将行为作用映射到神经活动是神经科学的基本目标。随着我们记录大型神经和行为数据的能力的增加,在自适应行为期间对神经动力学进行建模以探测神经表示的兴趣越来越大。特别是,神经潜在的嵌入可以揭示行为的潜在相关性,但是,我们缺乏可以明确,灵活地利用关节行为和神经数据的非线性技术。在这里,我们通过一种新的方法CEBRA填补了这一空白,该方法以假设或发现驱动的方式共同使用行为和神经数据来产生一致的高性能潜在潜在空间。我们验证其准确性,并在感官和运动任务中以及跨物种的简单或复杂行为中证明了工具对钙和电生理数据集的效用。它允许将单一和多课程数据集利用进行假设测试,或者可以不使用标签。最后,我们表明CEBRA可用于空间映射,揭示复杂的运动学特征,以及从视觉皮质中对天然电影的快速,高临界解码。

Mapping behavioral actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioral data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data. Here, we fill this gap with a novel method, CEBRA, that jointly uses behavioral and neural data in a hypothesis- or discovery-driven manner to produce consistent, high-performance latent spaces. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, and rapid, high-accuracy decoding of natural movies from visual cortex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源