论文标题
随机电转导模型的不变度量
Invariant Measures for a Stochastic Electroconvection Model
论文作者
论文摘要
我们考虑了一个随机电交流模型,该模型描述了具有加性随机强迫的二维流体中表面电荷密度的非线性演化。我们证明了解决方案的存在和独特性,我们证明了相应的马尔可夫半群是弱的砍伐者。我们还证明了与模型相关的马尔可夫过渡内核的不变度度量。
We consider a stochastic electroconvection model describing the nonlinear evolution of a surface charge density in a two-dimensional fluid with additive stochastic forcing. We prove the existence and uniqueness of solutions and we show that the corresponding Markov semigroup is weak Feller. We also prove the existence of invariant measures for the Markov transition kernels associated with the model.