论文标题
循环空间上的克利福德代数捆
The Clifford Algebra Bundle on Loop Space
论文作者
论文摘要
我们构建了一个由Riemannian歧管的平滑环空间的切线束形成的Clifford代数捆绑包,该串是在循环空间上的超级von Neumann代数的捆绑包。我们表明,这个捆绑包通常是非平凡的,更确切地说,它的琐碎性被第二个Stiefel-Whitney类的违法行为和歧管的第一个(分数)Pontrjagin类所阻碍。
We construct a Clifford algebra bundle formed from the tangent bundle of the smooth loop space of a Riemannian manifold, which is a bundle of super von Neumann algebras on the loop space. We show that this bundle is in general non-trivial, more precisely that its triviality is obstructed by the transgressions of the second Stiefel-Whitney class and the first (fractional) Pontrjagin class of the manifold.