论文标题

Benjamin-feir stokes浪潮有限深度

Benjamin-Feir instability of Stokes waves in finite depth

论文作者

Berti, Massimiliano, Maspero, Alberto, Ventura, Paolo

论文摘要

Whitham和Benjamin在1967年预测,如果深度$ \ MATHTT H $比关键的threshold $ \ Mathtt H__ {WB {WB} \ of 1.3663 \ of 1.3663 $,那么对于长波扰动而言,相对于长波扰动的小幅度定期旅行stokes浪潮在长波扰动方面是线性不稳定的。在本文中,我们完全描述了$ \ mathtt h> 0 $的任何值,随着floquet odpents $μ$的打开,在Stokes Wave处的四个特征值接近线性化方程的零。我们特别证明存在独特的深度$ \ mathtt h_ {wb} $,它与Whitham和Benjamin所预测的相吻合,因此,对于任何$ 0 <\ Mathtt H <\ Mathtt H_ {WB} $,接近零$ $ $ $ \ f。 h_ {wb} $,一对非纯化的虚构特征值描绘了一个封闭的图形“ 8”,由floquet offenent参数化。 AS $ \ Mathtt H \ to \ Mathtt H_ {WB}^+$此图“ 8”倒在复杂平面的原点上。该证明结合了Kato扰动理论的符合性版本,以计算$ 4 \ times 4 $ hamiltonian和可逆矩阵的特征值,而KAM启发了转换,以阻止Diagiaalalalalalailate。与[6]中无限深水案例不同,这四个特征值具有相同大小的$ o(μ)$ - 并且仅在一个非扰动的块 - 二基化步骤之后才出现正确的本杰明·芬现象。此外,必须按照整个证明进行跟踪,即相对于深度$ \ mathtt h $,$ 4 \ times 4 $减少矩阵的条目的明确依赖性。

Whitham and Benjamin predicted in 1967 that small-amplitude periodic traveling Stokes waves of the 2d-gravity water waves equations are linearly unstable with respect to long-wave perturbations, if the depth $\mathtt h$ is larger than a critical threshold $\mathtt h_{WB} \approx 1.363$. In this paper we completely describe, for any value of $\mathtt h > 0$, the four eigenvalues close to zero of the linearized equations at the Stokes wave, as the Floquet exponent $μ$ is turned on. We prove in particular the existence of a unique depth $\mathtt h_{WB}$, which coincides with the one predicted by Whitham and Benjamin, such that, for any $0 < \mathtt h < \mathtt h_{WB}$, the eigenvalues close to zero remain purely imaginary and, for any $\mathtt h > \mathtt h_{WB}$, a pair of non-purely imaginary eigenvalues depicts a closed figure "8", parameterized by the Floquet exponent. As $\mathtt h \to \mathtt h_{WB}^+$ this figure "8" collapses to the origin of the complex plane. The proof combines a symplectic version of Kato's perturbative theory to compute the eigenvalues of a $4 \times 4$ Hamiltonian and reversible matrix, and KAM inspired transformations to block-diagonalize it. The four eigenvalues have all the same size $O(μ)$ - unlike the infinitely deep water case in [6]- and the correct Benjamin-Feir phenomenon appears only after one non-perturbative block-diagonalization step. In addition one has to track, along the whole proof, the explicit dependence of the entries of the $4 \times 4$ reduced matrix with respect to the depth $\mathtt h$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源