论文标题

Rota-baxter的非亚伯延长谎言代数和自动形态的诱导性

Non-abelian extensions of Rota-Baxter Lie algebras and inducibility of automorphisms

论文作者

Das, Apurba, Hazra, Samir Kumar, Mishra, Satyendra Kumar

论文摘要

一个rota-baxter lie代数$ \ mathfrak {g} _t $是配备了rota-baxter operator $ t:\ mathfrak {g} \ rightArrow \ rightarrow \ mathfrak {g} $。在本文中,我们考虑了一个rota-baxter的非阿布尔延伸,lie代数$ \ mathfrak {g} _t $ by另一个rota-baxter lie代数$ \ mathfrak {h} _s。 \ Mathfrak {h} _s)$分类了{等价类的}。 Given a non-abelian extension $$ 0 \rightarrow \mathfrak{h}_S \xrightarrow{i} \mathfrak{e}_U \xrightarrow{p} \mathfrak{g}_T \rightarrow 0$$ of Rota-Baxter Lie algebras, we also show that the obstruction for a pair of Rota-Baxter $ \ mathrm {aut}(\ Mathfrak {h} _s)\ times \ times \ times \ mathrm {aut}(\ mathfrak {g} _t)$中的自动晶体是由$ \ mathrm {autfrak}(autfrak}(\ mathfrak}(\ mathfrak)组成的$ h^2_ {nab}(\ mathfrak {g} _t,\ mathfrak {h} _s)$。作为副产品,我们在rota-baxter lie代数的背景下获得了井短序列。

A Rota-Baxter Lie algebra $\mathfrak{g}_T$ is a Lie algebra $\mathfrak{g}$ equipped with a Rota-Baxter operator $T : \mathfrak{g} \rightarrow \mathfrak{g}$. In this paper, we consider non-abelian extensions of a Rota-Baxter Lie algebra $\mathfrak{g}_T$ by another Rota-Baxter Lie algebra $\mathfrak{h}_S.$ We define the non-abelian cohomology $H^2_{nab} (\mathfrak{g}_T, \mathfrak{h}_S)$ which classifies {equivalence classes of} such extensions. Given a non-abelian extension $$ 0 \rightarrow \mathfrak{h}_S \xrightarrow{i} \mathfrak{e}_U \xrightarrow{p} \mathfrak{g}_T \rightarrow 0$$ of Rota-Baxter Lie algebras, we also show that the obstruction for a pair of Rota-Baxter automorphisms in $\mathrm{Aut}(\mathfrak{h}_S ) \times \mathrm{Aut}(\mathfrak{g}_T)$ to be induced by an automorphism in $\mathrm{Aut}(\mathfrak{e}_U)$ lies in the cohomology group $H^2_{nab} (\mathfrak{g}_T, \mathfrak{h}_S)$. As a byproduct, we obtain the Wells short-exact sequence in the context of Rota-Baxter Lie algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源