论文标题

部分可观测时空混沌系统的无模型预测

Modelling and Control of Production Systems based on Observed Inter-event Times: An Analytical and Empirical Investigation (Ph.D. Thesis)

论文作者

Dizbin, Nima Manafzadeh

论文摘要

技术进步使制造商可以有效地从生产系统中收集和访问数据。数据收集的目的是将收集的数据部署在开发决策支持系统中,以评估绩效,问题识别和生产控制。本文的目的是研究如何在分析和经验上使用收集的数据来评估性能和优化制造系统。在论文的第一部分中,我调查如何将收集到的数据用于制造系统的有效控制和设计?为了调查事件间时可能依赖性对系统最佳控制和性能指标的影响,分析了通过使用单阈值生产控制政策控制的制造系统。结果表明,忽略到达或服务时间中的自相关会导致对否定(积极)相关过程的最佳阈值级别的高估(低估)。然后,结果表明,具有相关的到达和服务时间的生产/库存系统的最佳控制策略,其模型为马尔可夫到达过程是一个与国家有关的阈值策略。在论文的第二部分中,通过在半导体晶圆制造上使用与产品流有关的大型工业数据集进行探索性数据分析。然后,使用机器学习方法预测产品的周期时间,并评估不同预测算法的性能。本文中提出的分析和经验结果表明,从制造系统中有效使用收集的数据可以有效控制系统并准确地预测其主要绩效测量。

Technological advances allow manufacturers to collect and access data from a production system effectively. The objective of data collection is to deploy the collected data in developing decision support systems for performance evaluation, problem identification, and production control. The goal of this dissertation is to investigate how the collected data can be used to evaluate performance and optimize manufacturing systems, analytically and empirically. In the first part of the thesis, I investigate how can the collected data from the shop-floor be used in the efficient control and design of manufacturing systems? To investigate the impact of possible dependency in the inter-event times on the optimal control and performance measures of the system, a manufacturing system that is controlled by using a single-threshold production control policy is analyzed. It is shown that ignoring autocorrelation in inter-arrival or service times leads to overestimation (underestimation) of the optimal threshold level for negatively (positively) correlated processes. Then, it is shown that the optimal control policy of a production/inventory system with correlated inter-arrival and service times modeled as Markovian Arrival Processes is a state-dependent threshold policy. In the second part of the thesis, an exploratory data analysis is conducted by using a large industrial dataset related to the flow of the products at a semiconductor wafer fabrication. Then, the cycle times of the products are predicted using Machine Learning methods, and the performance of different prediction algorithms is assessed. The analytical and empirical results presented in this dissertation show that effective use of collected data from a manufacturing system enables controlling the system effectively and predicting its main performance measures accurately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源