论文标题

灵活的肖像图像编辑,并具有细粒度控制

Flexible Portrait Image Editing with Fine-Grained Control

论文作者

Liu, Linlin, Fu, Qian, Hou, Fei, He, Ying

论文摘要

我们开发了一种新的肖像图像编辑方法,该方法支持使用单个神经网络模型的几何,颜色,灯光和阴影的精细编辑。我们采用了一种新颖的不对称条件GAN体系结构:发电机采用转换的条件输入,例如边缘地图,调色板,滑块和口罩,可以由用户直接编辑;歧视者以有条件的输入方式可以更有效地指导可控的图像生成。以颜色编辑为例,我们将调色板(可以轻松编辑)送入发电机,然后将颜色地图(包含颜色的位置信息)送入鉴别器。我们还设计了一个区域加权歧视者,以便将更高的权重分配给更重要的区域,例如眼睛和皮肤。使用调色板,用户可以直接指定头发,皮肤,眼睛,嘴唇和背景的所需颜色。颜色滑块使用户可以直观的方式融合颜色。用户还可以通过修改相应的掩码来编辑灯光和阴影。我们通过在Celebamask-HQ数据集上评估该方法的有效性,包括多种任务,包括几何/颜色/阴影/光编辑,手绘草图到图像翻译和颜色传递。我们还提出了消融研究以证明我们的设计合理。

We develop a new method for portrait image editing, which supports fine-grained editing of geometries, colors, lights and shadows using a single neural network model. We adopt a novel asymmetric conditional GAN architecture: the generators take the transformed conditional inputs, such as edge maps, color palette, sliders and masks, that can be directly edited by the user; the discriminators take the conditional inputs in the way that can guide controllable image generation more effectively. Taking color editing as an example, we feed color palettes (which can be edited easily) into the generator, and color maps (which contain positional information of colors) into the discriminator. We also design a region-weighted discriminator so that higher weights are assigned to more important regions, like eyes and skin. Using a color palette, the user can directly specify the desired colors of hair, skin, eyes, lip and background. Color sliders allow the user to blend colors in an intuitive manner. The user can also edit lights and shadows by modifying the corresponding masks. We demonstrate the effectiveness of our method by evaluating it on the CelebAMask-HQ dataset with a wide range of tasks, including geometry/color/shadow/light editing, hand-drawn sketch to image translation, and color transfer. We also present ablation studies to justify our design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源