论文标题
用于圆柱电解质填充孔的充电动力学的修饰泊松静脉静脉平台的直接数值模拟
Direct numerical simulations of the modified Poisson-Nernst-Planck equations for the charging dynamics of cylindrical electrolyte-filled pores
论文作者
论文摘要
了解电解质填充的多孔电极对应用潜力的反应对于许多电化学技术很重要。在这里,我们考虑了圆柱电解质储层两侧的两个阻断圆柱孔的模型超级电容器。孔之间的逐步电势差$2φ$驱动设置中的离子通量,我们通过修改后的Poisson-Nernst-planck方程进行了研究,并用有限的元素求解。我们将讨论重点放在孔充电的主要时间尺度上,以及这些时间尺度如何依赖于三个无量纲的数字。除了无尺寸应用的潜在$φ$之外,我们考虑了孔阻力的比率$ r_b $ r $与散装储层电阻$ r_b $的比率$ r_b $ r_ {p}/λ$的比率$ r_ {p}/λ$ r_p $ r_p $ r_p $ r_p $ r_p $ r_p $ r_p $ r_p $ r_p $ r_p $。我们将数据与Aslyamov和Janssen($φ$),Posey和Morozumi($ R/R_B $)以及Henrique,Zuk和Gupta($ R_ {P}/λ$)进行比较。通过我们的数值方法,我们描述了这些理论的有效性及其基于的假设。
Understanding how electrolyte-filled porous electrodes respond to an applied potential is important to many electrochemical technologies. Here, we consider a model supercapacitor of two blocking cylindrical pores on either side of a cylindrical electrolyte reservoir. A stepwise potential difference $2Φ$ between the pores drives ionic fluxes in the setup, which we study through the modified Poisson-Nernst-Planck equations, solved with finite elements. We focus our discussion on the dominant timescales with which the pores charge and how these timescales depend on three dimensionless numbers. Next to the dimensionless applied potential $Φ$, we consider the ratio $R/R_b$ of the pore's resistance $R$ to the bulk reservoir resistance $R_b$ and the ratio $r_{p}/λ$ of the pore radius $r_p$ to the Debye length $λ$. We compare our data to theoretical predictions by Aslyamov and Janssen ($Φ$), Posey and Morozumi ($R/R_b$), and Henrique, Zuk, and Gupta ($r_{p}/λ$). Through our numerical approach, we delineate the validity of these theories and the assumptions on which they were based.