论文标题
重新检查连续对象检测的蒸馏
Re-examining Distillation For Continual Object Detection
论文作者
论文摘要
培训模型不断从新类和新域中检测和分类对象仍然是一个开放的问题。在这项工作中,我们彻底分析了对象检测模型的原因以及如何造成灾难性的遗忘。我们专注于两阶段网络中的基于蒸馏的方法;当代持续对象检测工作中采用的最常见的策略旨在将培训的模型的知识转移到以前的任务(教师) - 新模型 - 学生 - 学生 - 在学习新任务的同时。我们表明,这对于区域建议网络非常有效,但是这是错误的,但过于自信的教师预测阻止了学生模型有效地学习分类头。我们的分析为我们提供了一个基础,使我们能够根据当前的地面真相标签检测不正确的教师预测,并通过对分类头部分类头的蒸馏损失的平均平方误差来提出改进现有技术的改进。我们证明我们的策略不仅在类增量设置中起作用,而且在域增量设置中起作用,这构成了现实的背景,可能是代表性现实世界中的问题的设置。
Training models continually to detect and classify objects, from new classes and new domains, remains an open problem. In this work, we conduct a thorough analysis of why and how object detection models forget catastrophically. We focus on distillation-based approaches in two-stage networks; the most-common strategy employed in contemporary continual object detection work.Distillation aims to transfer the knowledge of a model trained on previous tasks -- the teacher -- to a new model -- the student -- while it learns the new task. We show that this works well for the region proposal network, but that wrong, yet overly confident teacher predictions prevent student models from effective learning of the classification head. Our analysis provides a foundation that allows us to propose improvements for existing techniques by detecting incorrect teacher predictions, based on current ground-truth labels, and by employing an adaptive Huber loss as opposed to the mean squared error for the distillation loss in the classification heads. We evidence that our strategy works not only in a class incremental setting, but also in domain incremental settings, which constitute a realistic context, likely to be the setting of representative real-world problems.