论文标题

鲁棒故障重建的超局部非线性未知输入观察者

Ultra Local Nonlinear Unknown Input Observers for Robust Fault Reconstruction

论文作者

Ghanipoor, Farhad, Murguia, Carlos, Esfahani, Peyman Mohajerin, van de Wouw, Nathan

论文摘要

在本文中,我们介绍了非线性系统中执行器和传感器故障估计的方法。该方法包括使用近似的超局部模型(有限的集成链)为故障向量增强系统动力学,并为增强动力学构建非线性未知输入观察者(NUIO)。然后,在增强状态(真正的状态加上与断层相关的状态)中,故障重建为强大的状态估计问题。我们提供足够的条件,以保证观察者的存在和估计误差动态的稳定性(在没有故障的情况下,在没有故障的情况下,原点的渐近稳定性)。然后,我们将观察者收益的合成作为一个半决赛程序,在该程序中,我们将近似故障模型引起的模型不匹配的L2获得到故障估计误差。最后,进行模拟以说明所提出的方法的性能。

In this paper, we present a methodology for actuator and sensor fault estimation in nonlinear systems. The method consists in augmenting the system dynamics with an approximated ultra-local model (a finite chain of integrators) for the fault vector and constructing a Nonlinear Unknown Input Observer (NUIO) for the augmented dynamics. Then, fault reconstruction is reformulated as a robust state estimation problem in the augmented state (true state plus fault-related state). We provide sufficient conditions that guarantee the existence of the observer and stability of the estimation error dynamics (asymptotic stability of the origin in the absence of faults and ISS guarantees in the faulty case). Then, we cast the synthesis of observer gains as a semidefinite program where we minimize the L2-gain from the model mismatch induced by the approximated fault model to the fault estimation error. Finally, simulations are given to illustrate the performance of the proposed methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源