论文标题
表征嘈杂量子电路的可重复性
Characterizing the Reproducibility of Noisy Quantum Circuits
论文作者
论文摘要
量子计算机复制或复制量子电路结果的能力是验证和验证量子计算应用的关键问题。由设备噪声中特征不良的波动引起的电路结果的统计变化可能会导致计算错误和不可再现的结果。虽然设备表征可以直接评估噪声,但最关注的问题是这种指标如何绑定给定量子电路的可重复性。在这里,我们首先根据计算结果之间的近距离距离直接评估嘈杂的量子电路的可重复性,然后我们表明设备表征对观察到的可变性提供了分析。我们使用单个Qubit测试电路的集合来验证该方法,该集合在具有良好特征的读数和门错误率的超导体传输处理器上执行。根据复合设备参数的确认,最终的电路可重复性描述是在可变测试电路上定义了观测到的Hellinger距离上的上限。电路结果与设备表征之间的这种预测相关性提供了一种评估噪声量子电路的可重复性的有效方法。
The ability of a quantum computer to reproduce or replicate the results of a quantum circuit is a key concern for verifying and validating applications of quantum computing. Statistical variations in circuit outcomes that arise from ill-characterized fluctuations in device noise may lead to computational errors and irreproducible results. While device characterization offers a direct assessment of noise, an outstanding concern is how such metrics bound the reproducibility of a given quantum circuit. Here, we first directly assess the reproducibility of a noisy quantum circuit, in terms of the Hellinger distance between the computational results, and then we show that device characterization offers an analytic bound on the observed variability. We validate the method using an ensemble of single qubit test circuits, executed on a superconducting transmon processor with well-characterized readout and gate error rates. The resulting description for circuit reproducibility, in terms of a composite device parameter, is confirmed to define an upper bound on the observed Hellinger distance, across the variable test circuits. This predictive correlation between circuit outcomes and device characterization offers an efficient method for assessing the reproducibility of noisy quantum circuits.