论文标题

有限温度QCD中的拓扑敏感性,物理$(u/d,s,c)

Topological susceptibility in finite temperature QCD with physical $(u/d, s, c)$ domain-wall quarks

论文作者

Chen, Yu-Chih, Chiu, Ting-Wai, Hsieh, Tung-Han

论文摘要

我们用$ n_f = 2+1+1+1 $ domain-wall QUARKS在物理点上进行晶格QCD的混合蒙特卡洛(HMC)模拟,以$ 64^3 \ times(64,20,16,12,12,10,8,8,6)$ lattices,每个lattices,每个lattices lattices,每个lattices lattices lattices swattice quarks。晶格间距和裸夸克质量是在$ 64^4 $ lattices上确定的。由此产生的量规集合为研究有限温度QCD提供了基础,该QCD在物理点上使用$ N_F = 2+1+1+域墙壁夸克。在本文中,我们确定了QCD真空的拓扑敏感性,以$ t> t_c \ sim 150 $ MEV。每个量规配置的拓扑充电是通过物理单位在同一流动时间的三叶草电荷中测量的,并且拓扑敏感性$χ_t(a,t)$是为每个集合确定的,并使用晶格间距$ a $ a $ a $ and $ t $。使用拓扑敏感性$χ_t(a,t)的15个量规合奏的$,带有三个晶格间距和不同的温度在$ t \ sim 155-516 $ MEV范围内,我们提取拓扑敏感性$χ_t(t)$在连续限制中。为了将我们的结果与他人进行比较,我们调查了晶格QCD中的$χ_t(t)$,以及$ n_f = 2+1(+1)$在物理点附近/附近的动态夸克,并讨论他们的差异。此外,还提出了有关域壁费米恩重新加权方法的详细讨论。

We perform hybrid Monte-Carlo (HMC) simulation of lattice QCD with $N_f=2+1+1$ domain-wall quarks at the physical point, on the $64^3 \times (64,20,16,12,10,8,6)$ lattices, each with three lattice spacings. The lattice spacings and the bare quark masses are determined on the $64^4$ lattices. The resulting gauge ensembles provide a basis for studying finite temperature QCD with $N_f=2+1+1 $ domain-wall quarks at the physical point. In this paper, we determine the topological susceptibility of the QCD vacuum for $T > T_c \sim 150 $ MeV. The topological charge of each gauge configuration is measured by the clover charge in the Wilson flow at the same flow time in physical units, and the topological susceptibility $ χ_t(a,T) $ is determined for each ensemble with lattice spacing $a$ and temperature $T$. Using the topological susceptibility $χ_t(a,T) $ of 15 gauge ensembles with three lattice spacings and different temperatures in the range $T \sim 155-516 $ MeV, we extract the topological susceptibility $χ_t(T)$ in the continuum limit. To compare our results with others, we survey the continuum extrapolated $χ_t(T)$ in lattice QCD with $N_f=2+1(+1)$ dynamical quarks at/near the physical point, and discuss their discrepancies. Moreover, a detailed discussion on the reweighting method for domain-wall fermion is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源