论文标题
$ n $ - 点witten图的注释$ {} _ 2 $
Notes on $n$-point Witten diagrams in AdS${}_2$
论文作者
论文摘要
Witten图为反DE-Sitter空间中的计算提供了一个扰动框架,并在各种全息计算中起着至关重要的作用。在ADS $ _2 $中的这项研究的情况下,一维边界允许简单的设置,在该设置中,我们获得了与残基定理相关器的扰动分析结果。此基本方法用于查找所有标量$ n $ - 点触点与共形尺寸外部运算符$δ= 1 $和$δ= 2 $的外部运算符,并确定ADS $ _2 $中Yang-Mills的拓扑相关器。另一种已建立的方法用于明确计算交换图,并在$ d = 1 $中给出一个Polyakov块的示例。我们还对最近提出的多点病房身份进行了扰动检查,并在$ \ Mathcal {n} $ = 4 sym上插入1/2 bps wilson线上的操作员的六点函数的强耦合扩展。
Witten diagrams provide a perturbative framework for calculations in Anti-de-Sitter space, and play an essential role in a variety of holographic computations. In the case of this study in AdS$_2$, the one-dimensional boundary allows for a simple setup, in which we obtain perturbative analytic results for correlators with the residue theorem. This elementary method is used to find all scalar $n$-point contact Witten diagrams for external operators of conformal dimension $Δ=1$ and $Δ=2$, and to determine topological correlators of Yang-Mills in AdS$_2$. Another established method is applied to explicitly compute exchange diagrams and give an example of a Polyakov block in $d=1$. We also check perturbatively a recently proposed multipoint Ward identity with the strong coupling expansion of the six-point function of operators inserted on the 1/2 BPS Wilson line in $\mathcal{N}$=4 SYM.