论文标题
与隐式周期性现场网络基于示例的模式合成
Exemplar-based Pattern Synthesis with Implicit Periodic Field Network
论文作者
论文摘要
沿辉长岩的固定视觉模式的合成广泛适用于纹理,形状建模和数字内容创建。因此,该技术的广泛适用性要求模式综合方法具有可扩展,多样和真实性。在本文中,我们提出了一个基于示例性的视觉模式综合框架,该框架旨在模拟视觉模式的内部统计数据,并生成满足上述要求的新的多功能模式。为此,我们提出了一个基于生成对抗网络(GAN)和周期性编码的隐式网络,从而将我们的网络称为隐式周期性现场网络(IPFN)。 IPFN的设计可确保可扩展性:隐式公式将输入坐标直接映射到特征,从而可以合成任意大小,并且对于3D形状合成具有计算有效的效率。使用周期性编码方案学习会鼓励多样性:网络受到限制,以基于周期性领域的空间潜在代码对示例的内部统计数据进行建模。再加上连续设计的GAN训练程序,IPFN被证明可以合成具有平稳过渡和局部变化的可易化模式。最后但并非最不重要的一点是,由于对抗性训练技术和编码的傅立叶功能,IPFN都学会了产生真实高质量结果的高频功能。为了验证我们的方法,我们对2D纹理合成和3D形状合成中的各种应用提出了新的实验结果。
Synthesis of ergodic, stationary visual patterns is widely applicable in texturing, shape modeling, and digital content creation. The wide applicability of this technique thus requires the pattern synthesis approaches to be scalable, diverse, and authentic. In this paper, we propose an exemplar-based visual pattern synthesis framework that aims to model the inner statistics of visual patterns and generate new, versatile patterns that meet the aforementioned requirements. To this end, we propose an implicit network based on generative adversarial network (GAN) and periodic encoding, thus calling our network the Implicit Periodic Field Network (IPFN). The design of IPFN ensures scalability: the implicit formulation directly maps the input coordinates to features, which enables synthesis of arbitrary size and is computationally efficient for 3D shape synthesis. Learning with a periodic encoding scheme encourages diversity: the network is constrained to model the inner statistics of the exemplar based on spatial latent codes in a periodic field. Coupled with continuously designed GAN training procedures, IPFN is shown to synthesize tileable patterns with smooth transitions and local variations. Last but not least, thanks to both the adversarial training technique and the encoded Fourier features, IPFN learns high-frequency functions that produce authentic, high-quality results. To validate our approach, we present novel experimental results on various applications in 2D texture synthesis and 3D shape synthesis.