论文标题

快速MRI的数据和物理驱动的学习模型 - 从CNN,GAN到注意力和变形金刚的基本原理和方法论

Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and Methodologies from CNN, GAN to Attention and Transformers

论文作者

Huang, Jiahao, Fang, Yingying, Nan, Yang, Wu, Huanjun, Wu, Yinzhe, Gao, Zhifan, Li, Yang, Wang, Zidong, Lio, Pietro, Rueckert, Daniel, Eldar, Yonina C., Yang, Guang

论文摘要

研究研究表明,在医学图像分析中使用数据驱动的深度学习模型在下游任务中没有任何疑问,例如解剖学细分和病变检测,疾病诊断和预后以及治疗计划。但是,当未正确进行上游成像时,深度学习模型并不是医学图像分析的主权补救措施(使用伪影进行)。这已经在MRI研究中表现出来,在MRI研究中,扫描通常很慢,容易进行运动伪像,信号比率相对较低,空间和/或时间分辨率较差。最近的研究见证了深度学习技术推动快速MRI的发展。本文旨在(1)介绍基于深度学习的数据驱动技术,包括快速MRI,包括卷积神经网络和基于生成的对抗性网络的方法,(2)调查基于注意力和变形金刚的模型,以加快MRI重建的速度,并详细介绍MRI ACCELERATION的物理学和数据驱动模型的研究。最后,我们将通过一些临床应用来证明数据协调的重要性以及在多中心和多扫描仪研究中这种快速MRI技术的可解释模型的重要性,并在当前的研究和未来研究方向的建议中讨论了常见的陷阱。

Research studies have shown no qualms about using data driven deep learning models for downstream tasks in medical image analysis, e.g., anatomy segmentation and lesion detection, disease diagnosis and prognosis, and treatment planning. However, deep learning models are not the sovereign remedy for medical image analysis when the upstream imaging is not being conducted properly (with artefacts). This has been manifested in MRI studies, where the scanning is typically slow, prone to motion artefacts, with a relatively low signal to noise ratio, and poor spatial and/or temporal resolution. Recent studies have witnessed substantial growth in the development of deep learning techniques for propelling fast MRI. This article aims to (1) introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods, (2) survey the attention and transformer based models for speeding up MRI reconstruction, and (3) detail the research in coupling physics and data driven models for MRI acceleration. Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies, and discuss common pitfalls in current research and recommendations for future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源