论文标题
通过平行化的单光子检测和深层嵌入,通过浑浊的体积进行瞬时运动分类
Transient motion classification through turbid volumes via parallelized single-photon detection and deep contrastive embedding
论文作者
论文摘要
在各种科学和临床环境中,快速无创探测空间变化的非相关事件,例如人类头骨下方的脑血流,是一项必不可少的任务。所使用的主要光学技术之一是弥漫性相关光谱(DC),其经典实现使用单个或几个单光子检测器,导致空间定位精度较差,时间分辨率相对较低。在这里,我们提出了一种通过并行化的单光子检测(crepe)}进行分类的技术,该技术将快速去相关事件分类,这是一种新形式的DC,可以使用来自较高灵敏度的较高灵敏度探测和分类不同的去相关运动,该动作使用$ 32 \ times32 $ 32 \ times32 $ pixel spad spad spad spad array shiperalized Speckle检测。我们通过将隐藏在5mm组织样的幻影下的不同时空 - 偏置模式进行分类,从而评估我们的设置,该模式被快速反相关的动态散射介质制成。十二个多模式纤维用于从组织幻影表面的不同位置收集散射光。为了验证我们的设置,我们通过在Multi-Kilo-Hertz速率下调制的数字微龙器设备(DMD)以及含有流动流体的容器幻影。除了具有胜过经典无监督的学习方法的深层对比学习算法外,我们证明我们的方法可以准确地检测和分类在浑浊散射媒体下的不同瞬态去相关事件(发生在0.1-0.4s中),而无需任何数据标记。这有可能应用于无创的深层组织运动模式,例如在紧凑型和静态检测探针内以多赫兹速率识别正常或异常的脑血流事件。
Fast noninvasive probing of spatially varying decorrelating events, such as cerebral blood flow beneath the human skull, is an essential task in various scientific and clinical settings. One of the primary optical techniques used is diffuse correlation spectroscopy (DCS), whose classical implementation uses a single or few single-photon detectors, resulting in poor spatial localization accuracy and relatively low temporal resolution. Here, we propose a technique termed Classifying Rapid decorrelation Events via Parallelized single photon dEtection (CREPE)}, a new form of DCS that can probe and classify different decorrelating movements hidden underneath turbid volume with high sensitivity using parallelized speckle detection from a $32\times32$ pixel SPAD array. We evaluate our setup by classifying different spatiotemporal-decorrelating patterns hidden beneath a 5mm tissue-like phantom made with rapidly decorrelating dynamic scattering media. Twelve multi-mode fibers are used to collect scattered light from different positions on the surface of the tissue phantom. To validate our setup, we generate perturbed decorrelation patterns by both a digital micromirror device (DMD) modulated at multi-kilo-hertz rates, as well as a vessel phantom containing flowing fluid. Along with a deep contrastive learning algorithm that outperforms classic unsupervised learning methods, we demonstrate our approach can accurately detect and classify different transient decorrelation events (happening in 0.1-0.4s) underneath turbid scattering media, without any data labeling. This has the potential to be applied to noninvasively monitor deep tissue motion patterns, for example identifying normal or abnormal cerebral blood flow events, at multi-Hertz rates within a compact and static detection probe.