论文标题
具有四个理性缠结的蒙特西诺诺斯结中的封闭基本表面的数量
The Number of Closed Essential Surfaces in Montesinos Knots with Four Rational Tangles
论文作者
论文摘要
在具有4个合理缠结的双曲线蒙特西尼诺斯结的补充中,我们研究了固定属$ g $的封闭,连接,必不可少的,定向的表面,直到同位素。我们表明,恰好有12个属2个表面和$ 8ϕ(g -1)$属的$大于2的表面,其中$ ϕ(g -1)$是$ g -1 $的Euler Toctient函数。观察到该计数与结的交叉数无关。此外,这类结构成了无限类的双曲线3个manifolds,结果适用于所有此类结的补充。
In the complement of a hyperbolic Montesinos knot with 4 rational tangles, we investigate the number of closed, connected, essential, orientable surfaces of a fixed genus $g$, up to isotopy. We show that there are exactly 12 genus 2 surfaces and $8ϕ(g - 1)$ surfaces of genus greater than 2, where $ϕ(g - 1)$ is the Euler totient function of $g - 1$. Observe that this count is independent of the number of crossings of the knot. Moreover, this class of knots form an infinite class of hyperbolic 3-manifolds and the result applies to all such knot complements.