论文标题

模拟元模拟的预测间隔

Prediction Intervals for Simulation Metamodeling

论文作者

Lam, Henry, Zhang, Haofeng

论文摘要

仿真元模型是指构建低保真模型,以使用很少的模拟运行来表示输入输出关系。基于高斯过程的随机Kriging是该任务的多功能技术。但是,这种方法依赖于特定的模型假设,并可能遇到可伸缩性挑战。在本文中,我们使用预测间隔研究了一种替代的元模型方法,以捕获模拟输出的不确定性。我们将元模型任务作为经验约束优化框架进行训练预测间隔,以获得准确的预测覆盖范围和狭窄的宽度。我们专门使用神经网络来表示这些间隔,并讨论近似解决此优化问题的程序。我们还提出了共形预测工具的改编,作为构造元模型预测间隔的另一种方法。最后,我们提出验证机制,并展示我们的方法如何在预测性能上享受无分配的有限样本保证。我们证明并将我们提出的方法与现有方法进行了比较,包括通过数值示例进行随机kriging。

Simulation metamodeling refers to the construction of lower-fidelity models to represent input-output relations using few simulation runs. Stochastic kriging, which is based on Gaussian process, is a versatile and common technique for such a task. However, this approach relies on specific model assumptions and could encounter scalability challenges. In this paper, we study an alternative metamodeling approach using prediction intervals to capture the uncertainty of simulation outputs. We cast the metamodeling task as an empirical constrained optimization framework to train prediction intervals that attain accurate prediction coverage and narrow width. We specifically use neural network to represent these intervals and discuss procedures to approximately solve this optimization problem. We also present an adaptation of conformal prediction tools as another approach to construct prediction intervals for metamodeling. Lastly, we present a validation machinery and show how our method can enjoy a distribution-free finite-sample guarantee on the prediction performance. We demonstrate and compare our proposed approaches with existing methods including stochastic kriging through numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源