论文标题
学会减少信息瓶颈以进行空中图像中的对象检测
Learning to Reduce Information Bottleneck for Object Detection in Aerial Images
论文作者
论文摘要
航空图像中的对象检测是地球科学和遥感领域中的一个基本研究主题。但是,有关该主题的高级方法主要集中于设计精美的骨干或头部网络,但忽略了颈部网络。在这封信中,我们首先要从信息瓶颈的角度强调颈部网络在对象检测中的重要性。然后,为了减轻当前方法中的信息缺陷问题,我们提出了一个全球语义网络(GSNET),该网络充当双向全球模式的桥梁,从骨干网络到头网络。与现有方法相比,我们的模型可以以较少的计算成本来捕获丰富和增强的图像特征。此外,我们进一步提出了一个特征融合细化模块(FRM),用于不同级别的特征,这些模块遇到了特征融合中语义差距的问题。为了证明我们方法的有效性和效率,对两个具有挑战性和代表性的空中图像数据集进行了实验(即DOTA和HRSC2016)。在准确性和复杂性方面的实验结果验证了我们方法的优越性。该代码已在GSNet开源。
Object detection in aerial images is a fundamental research topic in the geoscience and remote sensing domain. However, the advanced approaches on this topic mainly focus on designing the elaborate backbones or head networks but ignore neck networks. In this letter, we first underline the importance of the neck network in object detection from the perspective of information bottleneck. Then, to alleviate the information deficiency problem in the current approaches, we propose a global semantic network (GSNet), which acts as a bridge from the backbone network to the head network in a bidirectional global pattern. Compared to the existing approaches, our model can capture the rich and enhanced image features with less computational costs. Besides, we further propose a feature fusion refinement module (FRM) for different levels of features, which are suffering from the problem of semantic gap in feature fusion. To demonstrate the effectiveness and efficiency of our approach, experiments are carried out on two challenging and representative aerial image datasets (i.e., DOTA and HRSC2016). Experimental results in terms of accuracy and complexity validate the superiority of our method. The code has been open-sourced at GSNet.