论文标题
使用椭圆形集对不确定线性系统的可扩展管模型预测控制
Scalable tube model predictive control of uncertain linear systems using ellipsoidal sets
论文作者
论文摘要
这项工作提出了一种针对受动态模型不确定性和外源性干扰影响的线性系统的新型鲁棒模型预测控制(MPC)算法。不确定性是使用带有时间变化扰动矩阵的线性分数扰动结构对不确定性建模的,从而使该算法适用于大型模型类。 MPC控制器将状态管构造为一系列参数化椭圆形集,以绑定系统的状态轨迹。所提出的方法导致一个半决赛程序要在线求解,该程序的尺寸与系统的顺序线性缩放。状态管的设计被配置为离线优化问题,该问题具有灵活性,以施加理想的功能,例如在终端集合上稳健不变性。这与大多数现有的管MPC策略形成了对比,使用状态管中的多重焦点集,这些策略很难设计,并且其复杂性与系统顺序结合起来。该算法保证了闭环的限制满意度,递归可行性和稳定性。使用两项模拟研究证明了该算法的优势。
This work proposes a novel robust model predictive control (MPC) algorithm for linear systems affected by dynamic model uncertainty and exogenous disturbances. The uncertainty is modeled using a linear fractional perturbation structure with a time-varying perturbation matrix, enabling the algorithm to be applied to a large model class. The MPC controller constructs a state tube as a sequence of parameterized ellipsoidal sets to bound the state trajectories of the system. The proposed approach results in a semidefinite program to be solved online, whose size scales linearly with the order of the system. The design of the state tube is formulated as an offline optimization problem, which offers flexibility to impose desirable features such as robust invariance on the terminal set. This contrasts with most existing tube MPC strategies using polytopic sets in the state tube, which are difficult to design and whose complexity grows combinatorially with the system order. The algorithm guarantees constraint satisfaction, recursive feasibility, and stability of the closed loop. The advantages of the algorithm are demonstrated using two simulation studies.