论文标题

二项式转换和斐波那契力的一些定理的新证明

New proofs of some theorems for binomial transform and Fibonacci powers

论文作者

Peregrino, R. Sanchez

论文摘要

我们写本文的目的是在下一个问题上回答V. E. Hoggatt,Jr \ cite {Hogg}和Wessner \ cite {wess}:查找$ \ sum_ {k = 0}^n \ binom {n} $ p \ equiv 3 \,mod \,4 $。 \ par case $ p \ equiv 0 \,mod \,4 $和$ p \ equiv 2 \,mod \,4 $,韦斯纳给出了答案。特别是,我们给出了另一个演讲,这是韦斯纳论文的另一个证明。我们的方法使用本质上是Boyadzhiev \ Cite {Boy}的论文

Our aim in writing this paper is to answer to both V. E. Hoggatt, JR \cite{hogg} and Wessner\cite{wess} on the next question: find $\sum_{k=0}^n\binom{n}{k}F_{[k]}^p$, for the case $p\equiv 1\, mod\, 4$ and $p\equiv 3\, mod\, 4$. \par The case $p\equiv 0\, mod \,4$ and $p\equiv 2\, mod\, 4$, Wessner has given an answer. In particular, we give another presentation, another proof of the paper of Wessner. Our method use, essentially, the paper of Boyadzhiev\cite{boy}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源