论文标题
跨语性和多语言检索的参数效率神经reranking
Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval
论文作者
论文摘要
众所周知,最先进的神经(RE)排名是渴望数据的,鉴于英语以外的其他语言缺乏大规模的培训数据 - 使它们很少用于多语言和跨语性的检索设置。因此,当前的方法通常通过多语言编码器将接受英语数据培训的排名者转移到其他语言和跨语性的设置:它们调整了所有预读的大量多语言变压器(例如MMT,例如多语言bert)的所有参数对英语相关性判断,然后在目标语言中部署它们。在这项工作中,我们显示了两种参数效率的跨语性转移方法,即稀疏的微调掩码(SFTM)和适配器,可以使更轻巧,更有效的零拍传输到多语言和跨语言检索任务。我们首先通过蒙版语言建模来训练语言适配器(或SFTM),然后在顶部进行训练检索(即重新固定)适配器(SFTM),同时将所有其他参数保持固定。在推断时,这种模块化设计使我们能够通过应用(或SFTM)与目标语言的语言适配器(或SFTM)一起应用(RE)排名适配器(或SFTM)。我们对CLEF-2003和HC4基准进行了大规模的评估,此外,作为另一个贡献,我们还用三种新语言的查询来扩展前者:吉尔吉斯,Uyghur和Turkish。所提出的参数效率方法的表现优于标准零射击传输,而完整的MMT微调,同时是模块化和减少训练时间。对于低资源语言,收益特别明显,我们的方法也大大优于基于竞争的机器翻译的排名。
State-of-the-art neural (re)rankers are notoriously data-hungry which -- given the lack of large-scale training data in languages other than English -- makes them rarely used in multilingual and cross-lingual retrieval settings. Current approaches therefore commonly transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders: they fine-tune all parameters of pretrained massively multilingual Transformers (MMTs, e.g., multilingual BERT) on English relevance judgments, and then deploy them in the target language(s). In this work, we show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer to multilingual and cross-lingual retrieval tasks. We first train language adapters (or SFTMs) via Masked Language Modelling and then train retrieval (i.e., reranking) adapters (SFTMs) on top, while keeping all other parameters fixed. At inference, this modular design allows us to compose the ranker by applying the (re)ranking adapter (or SFTM) trained with source language data together with the language adapter (or SFTM) of a target language. We carry out a large scale evaluation on the CLEF-2003 and HC4 benchmarks and additionally, as another contribution, extend the former with queries in three new languages: Kyrgyz, Uyghur and Turkish. The proposed parameter-efficient methods outperform standard zero-shot transfer with full MMT fine-tuning, while being more modular and reducing training times. The gains are particularly pronounced for low-resource languages, where our approaches also substantially outperform the competitive machine translation-based rankers.