论文标题

语言模型可以从上下文中的解释中学习吗?

Can language models learn from explanations in context?

论文作者

Lampinen, Andrew K., Dasgupta, Ishita, Chan, Stephanie C. Y., Matthewson, Kory, Tessler, Michael Henry, Creswell, Antonia, McClelland, James L., Wang, Jane X., Hill, Felix

论文摘要

语言模型(LMS)可以通过适应一些文本示例来执行新任务。对于人类,将示例与任务原则联系起来的解释可以改善学习。因此,我们调查了很少的示例的解释是否可以帮助LMS。我们用答案解释和各种匹配的控制说明来注释40个具有挑战性的任务中的问题。我们评估不同类型的解释,说明和控制如何影响零和少数的性能。我们使用统计多层建模技术分析了这些结果,这些技术说明了条件,任务,提示和模型之间的嵌套依赖关系。我们发现,即使不进行调整,解释也可以提高性能。此外,在小验证集上手工调整性能的解释提供了更大的好处,并通过选择示例和解释来建立提示,从而大大改善了性能,而不是仅选择示例。最后,即使是未调整的解释,也表现出了仔细匹配的控件,这表明好处是由于示例及其解释之间的联系而不是较低级别的功能所致。但是,只有大型模型受益。总而言之,解释可以支持大型LM在具有挑战性的任务上学习大型LMS。

Language Models (LMs) can perform new tasks by adapting to a few in-context examples. For humans, explanations that connect examples to task principles can improve learning. We therefore investigate whether explanations of few-shot examples can help LMs. We annotate questions from 40 challenging tasks with answer explanations, and various matched control explanations. We evaluate how different types of explanations, instructions, and controls affect zero- and few-shot performance. We analyze these results using statistical multilevel modeling techniques that account for the nested dependencies among conditions, tasks, prompts, and models. We find that explanations can improve performance -- even without tuning. Furthermore, explanations hand-tuned for performance on a small validation set offer substantially larger benefits, and building a prompt by selecting examples and explanations together substantially improves performance over selecting examples alone. Finally, even untuned explanations outperform carefully matched controls, suggesting that the benefits are due to the link between an example and its explanation, rather than lower-level features. However, only large models benefit. In summary, explanations can support the in-context learning of large LMs on challenging tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源