论文标题
在手持操作过程中姿势估计的光学接近感
Optical Proximity Sensing for Pose Estimation During In-Hand Manipulation
论文作者
论文摘要
在手持操作过程中,机器人必须能够连续估计对象的姿势,以生成适当的控制动作。用于姿势估计的算法的性能在机器人的传感器上铰链能够检测歧视性的几何对象特征,但是以前的传感方式无法牢固地进行此类测量。机器人的手指可以阻塞环境或机器人安装的图像传感器的视图,而触觉传感器只能在接触端的局部进行测量。由指尖绑定的接近传感器对遮挡的鲁棒性和测量能力超出局部接触区域的能力,我们首先评估了基于接近传感器的姿势估计,以进行手持操作。我们开发了一种新型的两指手指,并用指尖插入的光学飞行时间接近传感器作为测试床,以进行平面机内操纵期间的姿势估计。在这里,手中的操纵任务包括机器人将圆柱体对象从工作空间的一端移动到另一端的机器人。我们证明,具有统计学意义,表明基于接近传感器的姿势在手持操作过程中通过粒子过滤进行估计:a)比基于触觉传感器的基线表现出50%的平均姿势误差; b)授权模型预测控制器与使用基于触觉传感器的姿势估计值相比,最终定位误差降低了30%。
During in-hand manipulation, robots must be able to continuously estimate the pose of the object in order to generate appropriate control actions. The performance of algorithms for pose estimation hinges on the robot's sensors being able to detect discriminative geometric object features, but previous sensing modalities are unable to make such measurements robustly. The robot's fingers can occlude the view of environment- or robot-mounted image sensors, and tactile sensors can only measure at the local areas of contact. Motivated by fingertip-embedded proximity sensors' robustness to occlusion and ability to measure beyond the local areas of contact, we present the first evaluation of proximity sensor based pose estimation for in-hand manipulation. We develop a novel two-fingered hand with fingertip-embedded optical time-of-flight proximity sensors as a testbed for pose estimation during planar in-hand manipulation. Here, the in-hand manipulation task consists of the robot moving a cylindrical object from one end of its workspace to the other. We demonstrate, with statistical significance, that proximity-sensor based pose estimation via particle filtering during in-hand manipulation: a) exhibits 50% lower average pose error than a tactile-sensor based baseline; b) empowers a model predictive controller to achieve 30% lower final positioning error compared to when using tactile-sensor based pose estimates.