论文标题
通过移动鼓风机学习气动非划算操作
Learning Pneumatic Non-Prehensile Manipulation with a Mobile Blower
论文作者
论文摘要
我们将气动性非划和操纵(即吹)作为有效移动散射物体进入目标插座的一种手段。由于空气动力力的混乱性质,吹气控制器必须(i)不断适应其动作的意外变化,(ii)保持细粒度的控制,因为丝毫失误可能会导致很大的意外后果(例如,散布对象已经堆积起来),以及(iii)推断远距离计划(例如,推断出长期的计划(例如,将机器人吹捧为策略性吹捧的位置)。我们在深度强化学习的背景下应对这些挑战,引入了空间动作地图框架的多频版本。这可以有效学习基于视觉的政策,这些政策有效地结合了高级计划和低级闭环控制,以进行动态移动操作。实验表明,我们的系统学会了对任务的有效行为,特别表明,吹吹以比推动更好的下游性能,并且我们的政策改善了基准的性能。此外,我们表明我们的系统自然会鼓励跨越低级细粒控制和高级计划的不同亚物质之间的新兴专业化。在装有微型气鼓的真实移动机器人上,我们表明我们的模拟训练策略可以很好地转移到真实的环境中,并可以推广到新颖的物体。
We investigate pneumatic non-prehensile manipulation (i.e., blowing) as a means of efficiently moving scattered objects into a target receptacle. Due to the chaotic nature of aerodynamic forces, a blowing controller must (i) continually adapt to unexpected changes from its actions, (ii) maintain fine-grained control, since the slightest misstep can result in large unintended consequences (e.g., scatter objects already in a pile), and (iii) infer long-range plans (e.g., move the robot to strategic blowing locations). We tackle these challenges in the context of deep reinforcement learning, introducing a multi-frequency version of the spatial action maps framework. This allows for efficient learning of vision-based policies that effectively combine high-level planning and low-level closed-loop control for dynamic mobile manipulation. Experiments show that our system learns efficient behaviors for the task, demonstrating in particular that blowing achieves better downstream performance than pushing, and that our policies improve performance over baselines. Moreover, we show that our system naturally encourages emergent specialization between the different subpolicies spanning low-level fine-grained control and high-level planning. On a real mobile robot equipped with a miniature air blower, we show that our simulation-trained policies transfer well to a real environment and can generalize to novel objects.