论文标题
天体几何形状
Celestial Geometry
论文作者
论文摘要
Celestial全息图表示$ \ Mathcal {S} $ - 矩阵元素作为CFT生活在夜空中的相关器。 Poincaré不变性对操作员的允许位置施加了其他选择规则。结果,根据每个操作员的标记,仅在天体球的某些贴片上支持$ n $ - 点相关器。在这里,我们启动了对天体几何形状的研究,研究了对不同穿越通道的天体振幅的运动支持。我们提供了简单的几何规则来确定此支持。对于$ n \ ge 5 $,我们可以将这些频道视为铺有瓷砖,形成天体的覆盖。我们的分析是更好地了解天体相关因子的分析性并阐明4D运动学和2D CFT交叉对称性概念之间的连接的阶梯。
Celestial holography expresses $\mathcal{S}$-matrix elements as correlators in a CFT living on the night sky. Poincaré invariance imposes additional selection rules on the allowed positions of operators. As a consequence, $n$-point correlators are only supported on certain patches of the celestial sphere, depending on the labeling of each operator as incoming/outgoing. Here we initiate a study of the celestial geometry, examining the kinematic support of celestial amplitudes for different crossing channels. We give simple geometric rules for determining this support. For $n\ge 5$, we can view these channels as tiling together to form a covering of the celestial sphere. Our analysis serves as a stepping off point to better understand the analyticity of celestial correlators and illuminate the connection between the 4D kinematic and 2D CFT notions of crossing symmetry.