论文标题

框内思考:学习超立方体表示的小组建议

Thinking inside The Box: Learning Hypercube Representations for Group Recommendation

论文作者

Chen, Tong, Yin, Hongzhi, Long, Jing, Nguyen, Quoc Viet Hung, Wang, Yang, Wang, Meng

论文摘要

作为超越传统个性化建议的一步,小组建议是建议可以满足一组用户的项目的任务。在小组建议中,核心是设计偏好聚合功能,以获得所有小组成员偏好的质量摘要。这种用户和组首选项通常表示为矢量空间中的点(即嵌入),其中多个用户嵌入被压缩到一个以方便组成组对的排名。但是,作为点,所得的组表示缺乏足够的灵活性和能力来说明多方面的用户偏好。同样,基于点嵌入的偏好汇总是对小组决策过程的忠实反映,在该过程中,所有用户都必须在每个嵌入维度而不是可谈判的间隔中就某个值达成共识。在本文中,我们通过超振管的概念提出了组的新表示,该概念是在矢量空间中包含无数点的子空间。具体而言,我们设计了HyperCube推荐人(Cuberec),以从用户嵌入中自适应地学习组超启机,而在优先集合期间,信息损失最小,并利用经过改进的距离指标来衡量组超级立方体和项目点之间的亲和力。此外,为了解决小组建议中长期存在的数据稀疏性问题,我们充分利用了超管的几何表现力,并通过与两组相交的创新融合了自学。在四个现实世界数据集上的实验验证了Cuberec优于最先进的基线。

As a step beyond traditional personalized recommendation, group recommendation is the task of suggesting items that can satisfy a group of users. In group recommendation, the core is to design preference aggregation functions to obtain a quality summary of all group members' preferences. Such user and group preferences are commonly represented as points in the vector space (i.e., embeddings), where multiple user embeddings are compressed into one to facilitate ranking for group-item pairs. However, the resulted group representations, as points, lack adequate flexibility and capacity to account for the multi-faceted user preferences. Also, the point embedding-based preference aggregation is a less faithful reflection of a group's decision-making process, where all users have to agree on a certain value in each embedding dimension instead of a negotiable interval. In this paper, we propose a novel representation of groups via the notion of hypercubes, which are subspaces containing innumerable points in the vector space. Specifically, we design the hypercube recommender (CubeRec) to adaptively learn group hypercubes from user embeddings with minimal information loss during preference aggregation, and to leverage a revamped distance metric to measure the affinity between group hypercubes and item points. Moreover, to counteract the long-standing issue of data sparsity in group recommendation, we make full use of the geometric expressiveness of hypercubes and innovatively incorporate self-supervision by intersecting two groups. Experiments on four real-world datasets have validated the superiority of CubeRec over state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源