论文标题

PVI-DSO:利用平面规律性直接稀疏视觉惯性探测仪

PVI-DSO: Leveraging Planar Regularities for Direct Sparse Visual-Inertial Odometry

论文作者

Xu, Bo, Li, Xin, Wang, Jingrong, Yuen, Chau, Li, Jiancheng

论文摘要

基于直接方法的单眼视觉惯性进程(VIO)可以利用图像中的所有可用像素同时估算摄像机运动并实时重建场景的密集图。但是,直接方法对光度变化敏感,可以通过在环境中引入几何信息来补偿。在本文中,我们提出了一种单眼直接稀疏的视觉惯性探测器,该惯性剂量计利用了平面规律性(PVI-DSO)。我们的系统从估计的地图点构建的3D网格中检测到平面规律。为了通过几何信息提高姿势估计准确性,使用紧密耦合的共面约束表达式表达直接方法中的光度误差。此外,为了提高优化效率,我们精心阐述了共面约束的线性化形式的分析性雅各布。最后,将惯性测量误差,共面点光度误差,非稳态光度误差和先前的误差添加到优化器中,同时提高了姿势估计的精度和网格本身。我们验证了整个系统在仿真和现实数据集中的性能。广泛的实验表明,我们的系统的表现优于最先进的同行。

The monocular visual-inertial odometry (VIO) based on the direct method can leverage all available pixels in the image to simultaneously estimate the camera motion and reconstruct the denser map of the scene in real time. However, the direct method is sensitive to photometric changes, which can be compensated by introducing geometric information in the environment. In this paper, we propose a monocular direct sparse visual-inertial odometry, which exploits the planar regularities (PVI-DSO). Our system detects the planar regularities from the 3D mesh built on the estimated map points. To improve the pose estimation accuracy with the geometric information, a tightly coupled coplanar constraint expression is used to express photometric error in the direct method. Additionally, to improve the optimization efficiency, we elaborately derive the analytical Jacobian of the linearization form for the coplanar constraint. Finally, the inertial measurement error, coplanar point photometric error, non-coplanar photometric error, and prior error are added into the optimizer, which simultaneously improves the pose estimation accuracy and mesh itself. We verified the performance of the whole system on simulation and real-world datasets. Extensive experiments have demonstrated that our system outperforms the state-of-the-art counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源