论文标题

通过因子调整后矢量自回归建模的高维时时间序列分割

High-dimensional time series segmentation via factor-adjusted vector autoregressive modelling

论文作者

Cho, Haeran, Maeng, Hyeyoung, Eckley, Idris A., Fearnhead, Paul

论文摘要

向量自回旋(VAR)模型通常用于建模高维时间序列,它们的分段扩展允许数据的结构变化。在VAR建模中,参数的数量与维度相当四次增长,这需要在高维度中进行稀疏性假设。但是,这种假设是否足以处理表现出强烈的串行和横截面相关性的数据集是有争议的。我们提出了一个分段固定的时间序列模型,该模型同时允许强大的相关性以及结构变化,其中普遍存在的串行和横截面相关性通过时间变化的因子结构来解释,并且在变量之间的任何剩余的特质依赖性都通过零件固定的静态变量模型来处理。我们提出了一个随附的两阶段数据分割方法,该方法完全解决了组件过程潜伏期所带来的挑战。它在估计潜在组成部分中变化点的总数和位置的一致性是在与现有文献中的条件相比要大得多的条件下建立的。我们证明了在模拟数据集上提出的方法的竞争性能以及向美国蓝芯片库存数据的应用。

Vector autoregressive (VAR) models are popularly adopted for modelling high-dimensional time series, and their piecewise extensions allow for structural changes in the data. In VAR modelling, the number of parameters grow quadratically with the dimensionality which necessitates the sparsity assumption in high dimensions. However, it is debatable whether such an assumption is adequate for handling datasets exhibiting strong serial and cross-sectional correlations. We propose a piecewise stationary time series model that simultaneously allows for strong correlations as well as structural changes, where pervasive serial and cross-sectional correlations are accounted for by a time-varying factor structure, and any remaining idiosyncratic dependence between the variables is handled by a piecewise stationary VAR model. We propose an accompanying two-stage data segmentation methodology which fully addresses the challenges arising from the latency of the component processes. Its consistency in estimating both the total number and the locations of the change points in the latent components, is established under conditions considerably more general than those in the existing literature. We demonstrate the competitive performance of the proposed methodology on simulated datasets and an application to US blue chip stocks data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源