论文标题
两条树的Sombor索引和岸
The Sombor index and coindex of two-trees
论文作者
论文摘要
伊万·古特曼(Ivan Gutman)引入的图形$ g $的Sombor索引被定义为所有边缘$ uv $ of $ g $的权重的总和$ \ sqrt {d_g(u)^2+d_g(v)^2} $,$ g $,$ d_g(u)$ d_g(u)$ d_g(u)$表示Vertex $ u $ in $ un in $ in g in $ in $ in $ in in $ in。 SOMBOR COINDEX最近定义为$ \ bar {so}(g)= \ sum \ limits_ {uv \ notin E(g)} \ sqrt {d_g(u)^2+d_g(v)^2} $。在本文中,确定了两条树中的最大和第二个SOMBOR指数,最小和第二个SOMBOR COINDEX。
The Sombor index of a graph $G$, introduced by Ivan Gutman, is defined as the sum of the weights $\sqrt{d_G(u)^2+d_G(v)^2}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of vertex $u$ in $G$. The Sombor coindex is recently defined as $\bar{SO}(G)=\sum \limits_{uv\notin E(G)}\sqrt{d_G(u)^2+d_G(v)^2}$. In this paper, the maximum and second maximum Sombor index, the minimum and second minimum Sombor coindex in two-trees are determined.