论文标题

多目标进化啤酒优化

Multi-Objective Evolutionary Beer Optimisation

论文作者

al-Rifaie, Mohammad Majid, Cavazza, Marc

论文摘要

食品生产是一个复杂的过程,可以从许多优化方法中受益。但是,人们对支持自定义食品特性以满足个人消费者偏好的方法越来越感兴趣。本文介绍了啤酒特性的个性化。在确定了生产量往往降低标准化的精酿啤酒生产过程的组成部分之后,我们引入了一个系统,该系统使酿酒商能够将所需的啤酒特性映射到成分剂量和组合中。先前探索的方法包括直接使用结构方程以及全球机器学习方法。我们引入了一个使用支持多目标优化的进化方法的框架。这项工作确定了与问题有关的目标,其关联,并提出了一个工作流程,以根据用户定义的标准自动发现多个新颖食谱。将多目标优化器产生的解决方案的质量与该方法的多个运行和单个客观进化技术的解决方案进行了比较。此比较提供了一个路线图,使用户可以在更多不同的选项中进行选择,或者可以对最喜欢的已确定解决方案之一进行微调。这里提出的实验证明了框架的可用性以及其标准的透明度。

Food production is a complex process which can benefit from many optimisation approaches. However, there is growing interest in methods that support customisation of food properties to satisfy individual consumer preferences. This paper addresses the personalisation of beer properties. Having identified components of the production process for craft beers whose production tends to be less standardised, we introduce a system which enables brewers to map the desired beer properties into ingredients dosage and combination. Previously explored approaches include direct use of structural equations as well as global machine learning methods. We introduce a framework which uses an evolutionary method supporting multi-objective optimisation. This work identifies problem-dependent objectives, their associations, and proposes a workflow to automate the discovery of multiple novel recipes based on user-defined criteria. The quality of the solutions generated by the multi-objective optimiser is compared against solutions from multiple runs of the method, and those of a single objective evolutionary technique. This comparison provides a road-map allowing the users to choose among more varied options or to fine-tune one of the favourite identified solution. The experiments presented here demonstrate the usability of the framework as well as the transparency of its criteria.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源