论文标题
牛顿后重力和类似Gaia的天文学。 PPN $γ$不确定性对视差的影响
Post-Newtonian gravity and Gaia-like astrometry. Effect of PPN $γ$ uncertainty on parallaxes
论文作者
论文摘要
高精度天文测量所采用的光传播的相对论模型基于参数化的纽约后形式主义,该形式提供了一个框架,用于检查假设违反一般相对性对星体数据的影响。天文学观察结果受到纽顿后参数$γ$的强烈影响,描述了引力光偏转的强度。我们在分析和数值上研究了PPN参数$γ$与Unity的偏差(这是一般相对性预测的值)会影响Gaia样星体测量的视差估计。通过分析计算了PPN $γ$较小变化产生的可观察量的变化。然后,我们考虑了观测值的这种变化如何反映在视差估计中,并进行了数值模拟以检查理论预测。 PPN $γ$的变化会导致视差的全局变化,我们提出了一个公式,描述了视差偏置,以卫星的barycentric距离,旋转轴和向太阳方向的角度以及PPN $γ$不确定。天体解决方案的数值模拟证实了理论结果。 PPN $γ$的最新估计表明,对Gaia视差零点的相应贡献不太可能超过0.2 $μ$。数值模拟表明,视差偏移很大程度上取决于黄道纬度。有人认为,这种效果是由于盖亚扫描定律中的不对称性造成的,该结论通过其他模拟完全验证,其旋转轴围绕太阳方向的旋转轴的反向方向进行了反向。
Relativistic models of light propagation adopted for high-precision astrometry are based on the parametrised post-Newtonian formalism, which provides a framework for examining the effects of a hypothetical violation of general relativity on astrometric data. Astrometric observations are strongly affected by the post-Newtonian parameter $γ$ describing the strength of gravitational light deflection. We study both analytically and numerically how a deviation in the PPN parameter $γ$ from unity, which is the value predicted by general relativity, affects the parallax estimations in Gaia-like astrometry. Changes in the observable quantities produced by a small variation in PPN $γ$ were calculated analytically. We then considered how such variations of the observables are reflected in the parallax estimations, and we performed numerical simulations to check the theoretical predictions. A variation in the PPN $γ$ results in a global shift of parallaxes and we present a formula describing the parallax bias in terms of the satellite barycentric distance, the angle between the spin axis and the direction to the Sun, and the PPN $γ$ uncertainty. Numerical simulations of the astrometric solutions confirm the theoretical result. The up-to-date estimation of PPN $γ$ suggests that a corresponding contribution to the Gaia parallax zero point unlikely exceeds 0.2 $μ$as. The numerical simulations indicate that the parallax shift is strongly dependent on ecliptic latitude. It is argued that this effect is due to an asymmetry in the Gaia scanning law and this conclusion is fully validated by additional simulations with a reversed direction of the precession of the spin axis around the direction to the Sun.