论文标题

基于深度学习的小地震检测和地震阶段分类

Deep Learning-based Small Magnitude Earthquake Detection and Seismic Phase Classification

论文作者

Li, Wei, Sha, Yu, Zhou, Kai, Faber, Johannes, Ruempker, Georg, Stoecker, Horst, Srivastava, Nishtha

论文摘要

可靠的地震检测和地震阶段分类通常是具有挑战性的,尤其是在低幅度事件或信噪比差的情况下。随着地震仪的改善和更好的全球覆盖范围,记录的地震数据的数量急剧增加。这使得基于传统方法的地震数据而令人生畏,因此促使人们需要采用更强大,更可靠的方法。在这项研究中,我们研究了两个基于深度学习的模型,称为1D残留Neuralnetwork(Resnet)和多支分支重新网络,用于解决地震信号检测和相位识别的问题,尤其是在层次形成格式中组织多个类别的情况下,可以使用后来的。这些方法在南加州地震网络的数据集上进行了训练和测试。结果表明,即使地震事件的幅度很小并被噪声掩盖,提出的方法可以实现可检测地震信号的稳健性能,并识别地震阶段。与先前提出的深度学习方法相比,引入的框架在地震监测中提高了4%,并在地震期分类方面略有增强。

Reliable earthquake detection and seismic phase classification is often challenging especially in the circumstances of low magnitude events or poor signal-to-noise ratio. With improved seismometers and better global coverage, a sharp increase in the volume of recorded seismic data is witnessed. This makes the handling of the seismic data rather daunting based on traditional approaches and therefore fuels the need for a more robust and reliable method. In this study, we investigate two deep learningbased models, termed 1D ResidualNeuralNetwork (ResNet) and multi-branch ResNet, for tackling the problem of seismic signal detection and phase identification, especially the later can be used in the case where multiple classes is organized in the hierarchical format. These methods are trained and tested on the dataset of the Southern California Seismic Network. Results demonstrate that the proposed methods can achieve robust performance for the detection of seismic signals, and the identification of seismic phases, even when the seismic events are of small magnitude and are masked by noise. Compared with previously proposed deep learning methods, the introduced frameworks achieve 4% improvement in earthquake monitoring, and a slight enhancement in seismic phase classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源