论文标题

通过建模如何以及如何提问,用于阅读理解评估的问题生成

Question Generation for Reading Comprehension Assessment by Modeling How and What to Ask

论文作者

Ghanem, Bilal, Coleman, Lauren Lutz, Dexter, Julia Rivard, von der Ohe, Spencer McIntosh, Fyshe, Alona

论文摘要

阅读是日常生活不可或缺的一部分,但是学习阅读是许多年轻学习者的斗争。在课程中,教师可以使用理解问题来提高参与度,测试阅读技能并提高保留率。从历史上看,这些问题是由熟练的教师编写的,但最近已使用语言模型来产生理解问题。但是,许多现有的问题生成(QG)系统专注于从文本中产生字面问题,并且无法控制生成的问题的类型。在本文中,我们研究了QG用于阅读理解的QG,其中推论问题至关重要,无法使用提取技术。我们提出了一个两步模型(HTA-WTA),该模型利用以前的数据集,并可以为特定的目标理解技能生成问题。我们提出了一个新的阅读理解数据集,其中包含带有基于故事的阅读理解能力(SBRC)注释的问题,从而可以进行更完整的读者评估。在几个实验中,我们的结果表明,HTA-WTA在该新数据集上的表现优于多个强基础。我们表明,HTA-WTA模型通过提出深刻的推论问题对强SCR进行了测试。

Reading is integral to everyday life, and yet learning to read is a struggle for many young learners. During lessons, teachers can use comprehension questions to increase engagement, test reading skills, and improve retention. Historically such questions were written by skilled teachers, but recently language models have been used to generate comprehension questions. However, many existing Question Generation (QG) systems focus on generating literal questions from the text, and have no way to control the type of the generated question. In this paper, we study QG for reading comprehension where inferential questions are critical and extractive techniques cannot be used. We propose a two-step model (HTA-WTA) that takes advantage of previous datasets, and can generate questions for a specific targeted comprehension skill. We propose a new reading comprehension dataset that contains questions annotated with story-based reading comprehension skills (SBRCS), allowing for a more complete reader assessment. Across several experiments, our results show that HTA-WTA outperforms multiple strong baselines on this new dataset. We show that the HTA-WTA model tests for strong SCRS by asking deep inferential questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源